首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This letter reports a. new excimer laser annealing (ELA) method to produce large polycrystalline silicon (poly-Si) lateral grains exceeding 4 μm. A selectively floating amorphous silicon (a-Si) flint with a 50 nm-thick air-gap was irradiated by a single-pulse XeCl excimer laser and uniform lateral grains were grown due to the lateral thermal gradient caused by the low thermal conductivity of the air. A poly-Si thin-film transistor (TFT) with two high-quality 4.6 μm-long lateral grains was fabricated by employing the proposed ELA and high field-effect mobility of 331 cm2/Vsec was obtained due to. the high-quality grain structure  相似文献   

2.
A four-mask-processed polycrystalline silicon thin-film transistor (poly-Si TFT) is fabricated using 50-pulse KrF excimer laser to crystallize an edge-thickened amorphous silicon (a-Si) active island without any shrinkage. This method introduces a temperature gradient in the island to enlarge grains from the edge, especially when the channel width is narrow. The grain boundaries across the width of the channel suppress the leakage current and the drain-induced barrier lowering. Moreover, the proposed poly-Si TFT with a channel length of L = 2 /spl mu/m and a channel width of W = 1.2 /spl mu/m possesses a high field-effect mobility of 260 cm/sup 2//Vs and an on/off current ratio of 2.31 /spl times/ 10/sup 8/.  相似文献   

3.
In this letter, a novel process for fabricating p-channel poly-Si/sub 1-x/Ge/sub x/ thin-film transistors (TFTs) with high-hole mobility was demonstrated. Germanium (Ge) atoms were incorporated into poly-Si by excimer laser irradiation of a-Si/sub 1-x/Ge/sub x//poly-Si double layer. For small size TFTs, especially when channel width/length (W/L) was less than 2 /spl mu/m/2 /spl mu/m, the hole mobility of poly-Si/sub 1-x/Ge/sub x/ TFTs was superior to that of poly-Si TFTs. It was inferred that the degree of mobility enhancement by Ge incorporation was beyond that of mobility degradation by defect trap generation when TFT size was shrunk to 2 /spl mu/m/2 /spl mu/m. The poly-Si/sub 0.91/Ge/sub 0.09/ TFT exhibited a high-hole mobility of 112 cm/sup 2//V-s, while the hole mobility of the poly-Si counterpart was 73 cm/sup 2//V-s.  相似文献   

4.
A novel omega-shaped-gated (Ω-Gate) poly-Si thin-film-transistor (TFT) silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory devices fabricated with a simple process have been proposed for the first time. The Ω-Gate structure inherently covered two sharp corners manufactured simply via a sidewall spacer formation. Due to the sharp corner geometry, the local electric fields across the tunneling oxide could be enhanced effectively, thus improving the memory performance. Based on this field enhanced scheme, the Ω-Gate TFT SONOS revealed excellent program/erase (P/E) efficiency and larger memory window as compared to the conventional planar (CP) counterparts. In addition, owing to the better gate controllability, the Ω-Gate TFT SONOS also exhibited superior transistor performance with a much higher on-current, smaller threshold voltage, and steeper subthreshold swing. Therefore, such an Ω-Gate TFT SONOS memory is very promising for the embedded flash on the system-on-panel applications.  相似文献   

5.
High-mobility poly-Si thin-film transistors (TFTs) were fabricated by a novel excimer laser crystallization method based on dual-beam irradiation. The new method can reduce the solidification velocity of the top Si layer by heating the bottom Si layer of the Si/SiO2/Si/glass substrate structure by means of laser irradiation not only from the front side but also from the back side. The grain size of poly-Si film was enlarged up to 2 μm. The field-effect mobilities of the TFT exceeded 380 cm2/V-s for electrons and 100 cm2/V-s for holes  相似文献   

6.
7.
In this study, we report on the fabrication of poly-crystalline silicon (poly-Si) using the metal-induced crystallization (MIC) method and its application to thin film transistors (TFTs). The top gate of the p-type TFTs, whose active layer used MIC poly-Si annealed for 1 h at 650 °C, showed a field effect mobility (μFE) of 7.5 cm2/V s. By increasing the crystallization time to 5 h, the quality of the MIC poly-Si was improved. The μFE increased from 7.5 to 15 cm2/V s. In order to enhance the channel mobility, the Si dangling bonds, which were produced during the transformation from the amorphous phase to the poly-crystalline phase of silicon (Si), were reduced by using plasma hydrogenation. Measurements show that the μFE reached 45 cm2/V s after passivation by an inductively coupled plasma chemical vapor deposition (ICPCVD) system.  相似文献   

8.
本文报道一种染料激光,它的泵浦阈值比用氮激光泵浦的染科激光低几十倍,调谐范围大于300A,且光束质量好。该染料激光是采用Rh6G和Coumarine120,并用我们新研制成的轴向放电激励小型XeCl准分子激光泵浦的。文中还对该纵向XeCl准分子激光的某些性能作了介绍。  相似文献   

9.
This paper presents results of gamma irradiation effects in advanced excimer laser annealed polysilicon thin film transistors realized in polysilicon films having different thicknesses. It is shown that the thickness of polysilicon film has a strong influence on the degradation level of electrical parameters of irradiated thin film transistors, offering a possibility for optimization of these devices with the purpose to increase their reliability. The analysis was performed by monitoring of important electrical parameters, as well as of the density of irradiation induced oxide trapped charge and interface traps at the oxide–polysilicon interface, and the density of polysilicon grain boundary traps in the channel region of the transistors.  相似文献   

10.
A new process for solid phase crystallization (SPC) of amorphous silicon (a-Si) using thin film heater is reported. With this localized Ti silicide thin film heater, we successfully crystallized 500 Å-thick a-Si in a few minutes without any thermal deformation of glass substrate. The size of crystallized silicon grain was abnormally big (30-40 μm). Polycrystalline thin film transistors (TFT) fabricated using this unique thin film heater showed better mobility than those of conventional ones by furnace annealing.  相似文献   

11.
Self-aligned, p-channel polycrystalline silicon thin-film transistors (TFTs) were fabricated by electric field enhanced crystallization of a-Si:H in contact with the Ni catalyst, where a chemical solution of 97.5% H/sub 2/O:1% HF:1.5% H/sub 2/O/sub 2/ was used for a surface treatment on polycrystalline silicon films. The wet surface treatment was found to remarkably improve the electrical properties of TFTs, especially the leakage current and subthreshold slope. The enhanced performance was confirmed to be from the removal of the Ni impurity remaining as defect states at the surface and also from the ameliorated surface roughness of the polycrystalline silicon films.  相似文献   

12.
陈宇 《电子测试》2016,(13):139-140
一种可用于可穿戴设备屏幕表面的透明非晶硅薄膜太阳能电池,采用激光刻蚀高密度微纳光通道阵列、TCO薄膜作为透明导电背电极,并减薄I层厚度来提升光线透过率。实验表明随着光刻密度增加或I层厚度的减少,光电转换效率会降低,光线透过率会增加,当I层厚度300nm,光刻孔隙直径30m,阵列间隔55m以内时,可获得50%以上的透过率(最高59%)和2.5%以上的光电转化效率(最高3%)。  相似文献   

13.
We have fabricated a high performance polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon-nitride (SiNx ) gate insulator using three stacked layers: very thin laser of hydrogenated amorphous silicon (a-Si:H), SiNx and laser annealed poly-Si. After patterning thin a-Si:H/SiNx layers, gate, and source/drain regions were ion-doped and then Ni layer was deposited. This structure was annealed at 250°C to form a NiSi silicide phase. The low resistive Ni silicides were introduced as gate/source/drain electrodes in order to reduce the process steps. The poly-Si with a grain size of 250 nm and low resistance n+ poly-Si for ohmic contact were introduced to achieve a high performance TFT. The fabricated poly-Si TFT exhibited a field effect mobility of 262 cm2/Vs and a threshold voltage of 1 V  相似文献   

14.
采用纳秒准分子激光在单晶硅试样表面制备了调制周期为50nm、调制比为2的TiN/AlN多层复合膜,并研究了N2分压对多层膜微结构和硬度的影响。结果表明,在低N2分压下薄膜表面颗粒相对较小,颗粒之间的空隙也不明显;随着N2分压的升高,薄膜表面颗粒明显粗化,且直径变大高度增高,颗粒之间孔隙变大。X射线衍射(XRD)研究表明...  相似文献   

15.
The structure of organic thin film transistors (OTFTs) is optimized by introducing a floating gate into the gate dielectric to reduce the threshold voltage of OTFTs. Then the optimized device is simulated, and the simulation results show that the threshold voltage of optimized device is reduced by about 10 V. The reduction of the threshold voltage is helpful and useful for the application of OTFTs in many areas. In addition, this way of reducing the threshold voltage of OTFT is compatible with traditional silicon technology and can be used in manufacturing.  相似文献   

16.
The structure of organic thin film transistors (OTFTs) is optimized by introducing floating gate into the gate dielectric to reduce the threshold voltage of OTFTs in this article. Then the optimized device is simulated and the results of the simulation show the threshold voltage of optimized device is reduced by about 10 V. The reduction of the threshold voltage is helpful and useful for the application of OTFTs in many areas. In addition, this way to reduce threshold voltage of OTFT is compatible with traditional silicon technology and can be used in manufacture.  相似文献   

17.
Leakage current of poly-Si TFT fabricated by a metal induced lateral crystallization(MILC) process was investigated in terms of metal contamination and crystallization mechanisms. MILC poly-Si TFTs showed a higher leakage current than those by the solid phase crystallization method at high drain voltages. It turned out that the Ni rich phases in the depleted junction region played the role of trapping and recombination centers to generate the leakage currents and that the leakage current was generated by thermionic field emission. The leakage current could be drastically reduced to 5 pA/μm at VGS=0 V and VDS=15 V after the exclusion of the Ni-rich phase from the junction region by a Ni offset MILC process.  相似文献   

18.
In this paper the influence of mechanical tensile strain on the performance of thin film transistors (TFTs), with various channel geometries, and of ring oscillators, with 3, 7, 11, 21, and 51 number of stages and device channel lengths of 1, 4, and 8 μm, fabricated on stainless steel foil substrate is investigated. TFT parameters such as field effect mobility, threshold voltage, subthreshold slope, leakage and gate current for both n-channel, and p-channel TFTs are studied at various longitudinal tensile strain levels. For strain levels from 0.0% to 0.5%, the field effect mobility of n-channel TFTs increases while that of p-channel ones decreases as the longitudinal tensile strain increases. The field effect mobility, of both n-channel and p-channel TFTs, becomes independent of longitudinal tensile strain at strain levels greater than 0.5%. Threshold voltage and subthreshold slope of p-channel TFTs increases while that of n-channel ones does not follow a specific trend. The leakage current of both type devices tends to decrease by increasing the longitudinal tensile strain. The propagation delay, per inverter stage of a ring oscillator, is investigated at different supply voltages and tensile strain levels. The propagation delay of inverters with longer device channel length (?4 μm) tends to decrease while that of shorter length tends to increase as the longitudinal tensile strain increases.  相似文献   

19.
薄膜应力激光测量的新装置   总被引:1,自引:2,他引:1  
介绍了一种基于多光束原理的薄膜应力测试方法,通过对反射光光点间距变化的检测,可以实时得到应力的信息。其灵敏度优于2.5×106 Pa,精度优于5%。该方案具有结构简单、测量速度快、适应性强等特点,与计算机自动控制系统相结合,可以应用于生产线的薄膜生长过程控制检测。  相似文献   

20.
郑必举  胡文 《半导体学报》2016,37(6):063003-6
Cubic AlN thin films were obtained on quartz substrate by pulse laser deposition in a nitrogen reactive atmosphere. A Nd-YAG laser with a wavelength of 1064 nm was used as the laser source. In order to study the influence of the process parameters on the deposited AlN film, the experiments were performed at various technique parameters of laser energy density from 70 to 260 J/cm2, substrate temperature from room temperature to 800℃ and nitrogen pressure from 0.1 to 50 Pa. X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy were applied to characterize the structure and surface morphology of the deposited AlN films. It was found that the structure of AlN films deposited in a vacuum is rocksalt under the condition of substrate temperature 600-800℃, nitrogen pressure 10-0.1 Pa and a moderate laser energy density (190 J/cm2). The high quality AlN film exhibited good optical property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号