首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nano/microcellular polypropylene/multiwalled carbon nanotube (MWCNT) composites exhibiting higher electrical conductivity, lower electrical percolation, higher dielectric permittivity, and lower dielectric loss are reported. Nanocomposite foams with relative densities (ρR) of 1.0–0.1, cell sizes of 70 nm–70 μm, and cell densities of 3 × 107–2 × 1014 cells cm−3 are achieved, providing a platform to assess the evolution of electrical properties with foaming degree. The electrical percolation threshold decreases more than fivefold, from 0.50 down to 0.09 vol.%, as the volume expansion increases through foaming. The electrical conductivity increases up to two orders of magnitude in the nanocellular nanocomposites (1.0 > ρR > ∼0.6). In the proper microcellular range (ρR  0.45), the introduction of cellular structure decreases the dielectric loss up to five orders of magnitude, while the decrease in dielectric permittivity is only 2–4 times. Thus, microcellular composites containing only ∼0.34 vol.% MWCNT present a frequency-independent high dielectric permittivity (∼30) and very low dielectric loss (∼0.06). The improvements in such properties are correlated to the microstructural evolution caused by foaming action (biaxial stretching) and volume exclusion. High conductivity foams have applications in electromagnetic shielding and high dielectric foams can be developed for charge storage applications.  相似文献   

2.
A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets into its matrix. The approach has two major advantages that make the material useful in a dielectric actuator. First, the glycerol droplets efficiently enhance the dielectric constant, which can reach astonishingly high values in the composite. Second, the liquid filler also acts as a softener that effectively decreases the elastic modulus of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to an extremely attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative permittivity changes as a function of filler loading, and the applicability of the models is discussed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44153.  相似文献   

3.
(3-Aminopropyl)triethoxysilane treated La(2−x)/3Na0.06TiO3 (x = 0.06) (LNT) microparticles filled polyetheretherketone (PEEK) composites were prepared using hot pressing process. The effects of variation of LNT ceramic filling fraction on dielectric properties, water absorption, thermal stability and mechanical strength were investigated. All composites demonstrate low water absorption (less than 0.4%) when the ceramic filling fraction is lower than 0.6Vf. The obtained composites exhibited dielectric permittivities varying from ~4 to ~22 as the ceramic fillers increased from 0.1 to 0.8Vf and low losses (~10−4 @1 MHz, 3~5 × 10−3 at the frequencies of microwave (10 GHz) and millimeter wave (29-50 GHz), respectively). The mechanical strength, dimensional and dielectric thermal stability of the composite are remarkably improved by the addition of LNT ceramic fillers. A composite with near zero temperature coefficients of dielectric permittivity or resonant frequency and flexural strength of ~140 MPa could be obtained. The out-of-plane coefficient of thermal expansion (CTE) could be reduced to ~20 ppm/°C as the ceramic filler loading reached 0.7Vf.  相似文献   

4.
《Ceramics International》2016,42(16):18124-18127
In this work, SiO2 doped SnO2-Zn2SnO4 ceramic composites with excellent varistor and dielectric properties were prepared through traditional ceramic processing. The obtained nonlinear coefficient α was as high as 9.6, and the breakdown electrical field EB and leakage current density JL was as low as 5.9 V/mm and 62 μA/cm2, respectively. At a low frequency of 40 Hz, the relative permittivity εr measured at room temperature was higher than 2.5×104. The nonlinear decrease of the semicircle diameter in the complex impedance spectra with increasing DC bias voltage indicates that the grain boundary effect is an important origin of the varistor and giant permittivity properties. With an increase of temperature, the relaxor peak of the imaginary part M″ of the complex electric modulus shifted to high frequency and the activation energy Ea obtained from the M″ spectrum was about 0.31 eV, much lower than the grain boundary barrier height ϕb. The results suggest that other mechanisms may also be responsible for the giant permittivity property besides grain boundary barriers.  相似文献   

5.
Novel copper nanowires (CuNWs)/poly(vinylidene fluoride) (PVDF) nanocomposites with high dielectric permittivity (ε′) and low dielectric loss (ε″) were prepared by a precipitation technique followed by melt compression. Their dielectric properties over the broadband frequency range, i.e. 101–106 Hz, were compared with multi-walled carbon nanotubes (MWCNT)/PVDF nanocomposites prepared by the same technique. It was observed that the CuNWs/PVDF nanocomposites had higher dielectric permittivity, lower dielectric loss and thus significantly lower dissipation factor (tan δ) than the MWCNT/PVDF nanocomposites at room temperature. This behavior was ascribed to a higher conductivity of the fresh core of the CuNWs relative to the MWCNT, which provided the composites with a higher amount of mobile charge carriers participating in the interfacial polarization. Moreover, the presence of oxide layers on the CuNWs surfaces diminished the conductive network formation leading to a low dielectric loss.  相似文献   

6.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   

7.
Hexagonal boron nitride is a material with a unique combination of mechanical, chemical, and electrical properties and therefore of considerable technical and commercial interest. Nevertheless, there exists only very limited knowledge concerning the correlation of microstructure and electrical and dielectrical properties of such materials. In this work, the microstructure, dielectric breakdown resistance (dielectric strength), and low permittivity of different BN ceramics and composites were investigated. Besides exhibiting a very high specific electrical resistivity of 1013–1015 Ω cm, the materials had excellent dielectric strengths (up to 53 kV/mm) and low electrical permeability (4.1). The dielectric strength depended strongly on the porosity and to a lesser extent on the content of secondary phases, whereas the permittivity was influenced by the secondary phases. The aging of the materials in humid air did not significantly alter these values. The permittivity was found to be independent of frequency between 0.1 MHz and 10 MHz and temperature up to 300 °C.  相似文献   

8.
A simple strategy for the preparation of composites with high dielectric constant and thermal conductivity was developed through a typical interface design. Graphite nanoplatelets (GNPs) with a thickness of 20–50 nm are fabricated and homogeneously dispersed in the epoxy matrix. A high dielectric constant of more than 230 and a high thermal conductivity of 0.54 W/mK (a 157% increase over that of pure epoxy) could be obtained for the composites with a lower filler content of 1.892 vol.%. The dielectric constant still remains at more than 100 even in the frequency range of 105–106 Hz. When loaded at 2.703 vol.%, GNP/epoxy composites have a dielectric constant higher than 140 in the frequency range of 102–104 Hz and a high thermal conductivity of 0.72 W/mK, which is a 240% increase over that of pure epoxy. The high dielectric constant and low loss tangent are observed in the composite with the GNPs content of 0.949 vol.% around 104 Hz. It is believed that high aspect ratio of GNPs and oxygen functional groups on their basal planes are critical issues of the constitution of a special interface region between the GNPs and epoxy matrix and the high performance of the composites.  相似文献   

9.
Reduction of dielectric loss for CCTO ceramics is a prerequisite for their applications. Considering internal barrier layer capacitance effect, improving the capacitance and grain boundary resistance is an effective way to reduce dielectric loss. Therefore, more conductive Ti3+ and Cu+ ions were introduced to grains by adding carbon to ceramic bodies, improving the permittivity of CCTO ceramics. Annealing was performed to increase the grain boundary resistance. The dielectric loss of the CCTO ceramics thus prepared, which maintain a giant permittivity, is significantly reduced. Specifically, the CCTO ceramic with carbon addition, which was sintered at 1080 °C for 8 h and air annealed at 950 °C for 2 h, exhibits a giant permittivity of about 2.50(5)×104 and a low dielectric loss of less than 0.050(2) from below 20 Hz to 50 kHz at room temperature. Meanwhile, its dielectric loss at 1–10 kHz is less than 0.050(2) from below room temperature to about 100 °C.  相似文献   

10.
The dielectric properties of SrTiO3 ceramics sintered in nitrogen (N2) exhibit a weak temperature- and frequency-dependent giant permittivity (>104) as well as a very low dielectric loss (mostly < 0.02) over a broad temperature range from −100 to 200 °C. Based on the results of ac conductivity and structural analysis, the giant permittivity and low dielectric loss were due to the fully ionized oxygen vacancies and giant defect-dipoles. When further sintering these ceramics in air, the materials exhibit a large temperature- and frequency-dependent high dielectric loss, which were due to the ionization and motion of oxygen vacancies.  相似文献   

11.
(100-x) wt.% BaTi0.85Sn0.15O3–x wt.% MgO (BTS/MgO) composite ceramics were prepared by spark plasma sintering (SPS) technology. Phase constitution, microstructure, dielectric and electrical energy storage properties of BTS/MgO composite ceramics were investigated. The samples prepared by SPS had smaller grain size and presented layer-plate substructure. Dielectric permittivity and dielectric loss of BTS/MgO composite ceramics decreased significantly with the content of MgO increasing, and dielectric tunability maintained a relatively high value (>45%). Meanwhile, the dielectric breakdown strength was improved when addition of MgO in BTS matrix, which resulted in a significant improvement of energy storage density. The high dielectric breakdown strength of 190 kV/cm, energy storage density of 0.5107 J/cm3 and energy storage efficiency of 92.11% were obtained in 90 wt.% BaTi0.85Sn0.15O3–10 wt.% MgO composite ceramics. Therefore, BTS/MgO composites with good tunable dielectric properties and electrical energy storage properties could be exploited for energy storage and phase shifter device applications.  相似文献   

12.
CaTiO3 is a typical linear dielectric material with high dielectric constant, low dielectric loss, and high resistivity, which is expected as a promising candidate for the high energy storage density applications. In the previous work, an energy density of 1.5 J/cm3 was obtained in CaTiO3 ceramics, where the dielectric strength was only 435 kV/cm. In fact, the intrinsic dielectric strength of CaTiO3 is predicted as high as 4.2 MV/cm. Therefore, it should be a challenge issue to enhance the dielectric strength and energy storage density of CaTiO3 ceramics by optimizing the microstructures. In the present work, dense CaTiO3 ceramics with fine and uniform microstructures are prepared by spark plasma sintering, and the greatly enhanced dielectric strength (910 kV/cm) and energy storage density (6.9 J/cm3) are obtained. This can be ascribed to the improved resistivity and thermal conductivity, associated with the fine and uniform microstructures. The different post‐breakdown features of CaTiO3 ceramics prepared by different process well interpret why the enhanced dielectric strength is achieved in the SPS sample. The energy storage density can be further improved to 11.8 J/cm3 by introducing the amorphous alumina thin films as the charge blocking layer, where the dielectric strength is 1188 kV/cm.  相似文献   

13.
Ba0.3Sr0.475Ce0.03La0.12Ti0.997Mn0.003O3/Polytetrafluoroethylene (PTFE) composites were prepared using powder processing technique. The effects of the ceramic filler volume fraction and the coupling agent on the phase composition, microstructure, dielectric and thermal properties of the composites were investigated in this paper. The ceramic filler dispersion in the PTFE matrix, thus the dielectric loss, permittivity, and dimensional thermal stability of the composite was considerably improved by the modification of BST filler surface using phenyl trimethoxy silane (PTMS) coupling agent. Variation of the dielectric permittivity of the composite with composition was well fitted by the effective medium theory (EMT) model in the experimental compositional range. The obtained silane-treated composite with 0.5 Vf BST exhibits extremely low dielectric loss: εr = 16, tan δ = 5.4 × 10−4 @1 MHz and 5.16 ± 0.6 × 10−3 @ 10 GHz. The CTE of the composites was reduced to 43 ppm/°C.  相似文献   

14.
CaCu3-xZnxTi4O12 ceramics (x = 0, 0.05, 0.10) were successfully prepared by a conventional solid-state reaction method. Their structural and dielectric properties, and nonlinear electrical response were systematically inspected. The X-ray diffraction results indicated that single-phase CaCu3Ti4O12 (JCPDS no. 75–2188) was obtained in all sintered ceramics. Changes in the lattice parameter are well-matched with the computational result, indicating an occupation of Zn2+ doping ions at Cu2+ sites. The overall tendency shows that the average grain size decreases when x increases. Due to a decrease in overall grain size, the dielectric permittivity of CaCu3-xZnxTi4O12 decreases expressively. Despite a decrease in the dielectric permittivity, it remains at a high level in the doped ceramics (~3,406–11,441). Besides retention in high dielectric permittivity, the dielectric loss tangent of x = 0.05 and 0.10 (~0.074–0.076) is lower than that of x = 0 (~0.227). A reduction in the dielectric loss tangent in the CaCu3-xZnxTi4O12 ceramics is closely associated with the enhanced grain boundary response. Increases in grain boundary resistance, breakdown electric field, and conduction activation energy of grain boundary as a result of Zn2+ substitution are shown to play a crucial role in improved grain boundary response. Furthermore, the XPS analysis shows the existence of Cu+/Cu2+ and Ti3+/Ti4+, indicating charge compensation due to the loss of oxygen lattice. Based on all results of this work, enhanced dielectric properties of the Zn-doped CCTO can be explained using the internal barrier layer capacitor model.  相似文献   

15.
《Ceramics International》2017,43(17):15115-15121
Spherical Ba0.96La0.04TiO3 powders were synthesized by a wet chemical method-based on a precipitation process, able of controlling uniformity and particle size. After sintering, fine-grain Ba0.96La0.04TiO3 ceramics with good dielectric properties were obtained. Different synthesis routes of Ba0.96La0.04TiO3 ceramics were used, and their effects on microstructure and dielectric properties were examined. Results showed that the ceramics samples prepared by La3+ and Ba2+ added together (abbreviated as, BLT-T) resulted in a mixture of large and small grains, sharp permittivity peaks, and high dielectrics loss. By comparison, another ceramics samples prepared by La3+ and Ba2+ added separately (BLT-S) exhibited uniform grain size and broadened/flattened permittivity peaks. The high value of εr (3255) and low tan δ (0.01) at room temperature and negligible temperature coefficient of capacitance from − 35 to 85 °C suggested the suitability of the above materials for multilayer capacitor applications.  相似文献   

16.
High performance ultra-low temperature co-fired ceramic (ULTCC) materials were prepared from CuO- MgO- ZnO- Al2O3- B2O3- Li2O glass-ceramics. The sintering behaviors, crystalline phase evolution, microstructure and dielectric properties, as well as their compatibility with Ag and Al electrodes, were investigated. With the suitable substitution of MgO for ZnO, the dielectric properties of glass-ceramics were improved. It is mainly associated with the fine microstructure, highly crystallinity, and decrease in tetrahedral distortion in the crystal lattice. All the glasses completed the densification at 575–600 °C, and ZnB4O7 is the only crystalline phase precipitated from the glasses. Moreover, the glass-ceramic with 1 wt% MgO sintered at 575 °C for 5 h, exhibited low relative permittivity ~ 7.1 and low dielectric loss ~ 6.40 × 10?4. And the glass-ceramic with 4 wt% MgO sintered at 600 °C for 5 h, also displayed low relative permittivity ~ 7.1 and low dielectric loss ~ 5.77 × 10?4. Both two glasses have good sintering compatibility with silver and aluminum electrodes, which provided high potential for ULTCC application.  相似文献   

17.
Dielectric elastomer actuators (DEAs) are promising soft electromechanical transducers for soft robotics. Fabricating a high-performance DEA actuated by sub-kV voltage remains challenging. Here, a facile method not only to fabricate ultrathin dielectric elastomer films of triblock copolymers but also to enhance the dielectric breakdown strength and thus enhance the electromechanical performance is reported. A thick thermoplastic elastomer film of poly(styrene-b-butyl acrylate-b-styrene) from solution blading is symmetrically pre-stretched and relaxed at 120 °C to fabricate a freestanding ultrathin DE film. Compared with the pristine DE film of the same thickness (12 µm), the thermally-relaxed DE film with equally biaxial pre-stretch ratio 3.5 × 3.5 exhibits increased electrical breakdown strength by a factor of 1.9 (from 43 to 82 V µm−1), maximum actuation area strain by a factor of 1.9 (from 11.7% to 22.4%), and highest energy density by a factor of 5.7 (from 4.5 to 25.8 kJ m−3). The enhancement may be ascribed to the self-reinforcement of the dielectric breakdown strength due to the morphology change of polystyrene nanodomains from spheres to oblate spheroids. Thanks to the ultra-thinness, the high electromechanical performance is achieved within sub-kV driving voltage in all cases.  相似文献   

18.
Polarized light scattering in bulk polymers is positively correlated with the intensity of dielectric fluctuation and the size of the heterogeneous structure, which is expressed by a correlation length. In this study, the influence of dielectric fluctuation was independently investigated for the first time on the basis of the difference in the light-scattering properties between two random copolymers – methyl methacrylate (MMA)/pentafluorophenyl methacrylate (PFPMA) and MMA/phenyl methacrylate (PMA). These copolymers have similar correlation lengths but show different intensities of dielectric fluctuation. When the difference of the mean-square average of the fluctuations of all dielectric constants between the copolymers was 105 × 10−10, the difference in isotropic light-scattering loss was 425 dB/km at 633 nm.  相似文献   

19.
《Ceramics International》2022,48(15):21543-21551
How to achieve a giant dielectric constant and high energy storage density at the same time has been the problem to be solved for donor-acceptor co-doped TiO2 ceramics. In this work, (Ho0.5Ta0.5)0.01Ti0·99O2 - x SiO2, where x = 0, 1, 3, 5 and 7 wt% (HTTO - x wt% SiO2), nanocomposites were prepared via a conventional mixed oxide technique. Significantly, the HTTO - 5 wt% SiO2 composite ceramic exhibits a low dielectric loss (tanδ ~ 0.012) and an ultrahigh permittivity (εr ~ 1.29 × 104) at 1 kHz. Also, excellent energy storage property with a high breakdown field strength (Eb ~1.86 kV/cm) and energy storage density (η ~ 1.97 mJ/cm3) was obtained in HTTO - 5 wt% SiO2 ceramic. Besides, the enhancement of Eb is attributed to the finer grains and the presence of SiO2 blocking layers in the grain boundaries, which hinder the long-range motion of electrons. It can be concluded that the CP and high energy storage properties arise from the combined contribution of enhanced grain boundary effects and electron-pinning type of defect dipole (EPDD) effects. This study not only proposes an effective method improving Eb, but also offers a new routine for how to simultaneously achieve CP and high η in TiO2 dielectric materials.  相似文献   

20.
《Ceramics International》2020,46(11):19015-19021
Ba0.67Sr0.33TiO3 (BST) ceramics with highly improved dielectric performance were fabricated by a novel direct coagulation casting via high valence counter ions (DCC-HVCI) method. The influence of solid loading on densification behavior, micromorphology, and dielectric performance of the samples was investigated. With the increase of solid loading from 40 to 50 vol%, the maximum densification rate of BST ceramics increased from 0.090 to 0.122 s−1, and the densification temperature decreased from 1424 to 1343 °C, which indicated that high solid loading could promote the densification behavior of samples during sintering. BST ceramics fabricated by the DCC-HVCI method showed uniform grain size and microstructure, which was beneficial for the dielectric properties of BST ceramics. Samples obtained from 45 vol% suspensions possessed the lowest dielectric permittivity (εr ≈ 2801), and the dielectric loss (tanδ≈0.0262) was about 1/10 of that of dry-pressed samples (tanδ≈0.301), which could be attributed to the composition homogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号