首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conductive multiwall carbon nanotube/polystyrene (MWCNT/PS) composites are prepared based on latex technology. MWCNTs are first dispersed in aqueous solution of sodium dodecyl sulfate (SDS) driven by sonication and then mixed with different amounts of PS latex. From these mixtures MWCNT/PS composites were prepared by freeze-drying and compression molding. The dispersion of MWCNTs in aqueous SDS solution and in the PS matrix is monitored by UV–vis, transmission electron microscopy, electron tomography and scanning electron microscopy. When applying adequate preparation conditions, MWCNTs are well dispersed and homogeneously incorporated in the PS matrix. The percolation threshold for conduction is about 1.5 wt% of MWCNTs in the composites, and a maximum conductivity of about 1 S m−1 can be achieved. The approach presented can be adapted to other MWCNT/polymer latex systems.  相似文献   

2.
The migration of multi-walled carbon nanotubes (MWCNTs) from the thermodynamically favored polycarbonate (PC) phase to the acrylonitrile-butadiene-styrene (ABS) phase is observed when PC/MWCNT masterbatch is diluted with PC and ABS by melt mixing for 5 min with 70% of ABS having relatively high rubber content. The migration is explained by a combination of the morphology evolution, high rubber content and higher affinity of MWCNTs to polybutadiene (PB) than to PC. The high rubber content increases the probability of the contact between MWCNTs and elongated rubber particles during the morphology evolution, most MWCNTs are dragged out of the PC phase to the ABS phase by the surrounding rubber particles because of the better affinity of MWCNTs to PB than to PC. As a result of the selective localization of most MWCNTs in the continuous ABS phase, the resulting ABS/PC/MWCNT composites are conductive. However, with a long mixing time of 60 min, most MWCNTs come back to the PC phase due to the change in the structure of PB chains which decreases the interaction between MWCNTs and rubber particles, resulting in non-conductive materials.  相似文献   

3.
The sonication-driven dispersion of multi-wall carbon nanotubes (MWCNTs) in aqueous surfactant solution has been monitored by UV-vis spectroscopy and transmission electron microscopy. Time dependent sonication experiments reveal that the maximum achievable dispersion of MWCNTs corresponds to the maximum UV-vis absorbance of the solution. With higher surfactant concentration the dispersion rate of MWCNTs increases and less total sonication energy is required to achieve maximum dispersion. Dispersion of higher MWCNT concentrations requires higher total sonication energy. For effective dispersion the minimum weight ratio of surfactant to MWCNTs is 1.5-1. The surfactant molecules are adsorbed on the surface of the MWCNTs and prevent re-aggregation of MWCNTs so that a colloidal stability of MWCNT dispersions could be maintained for several months. The maximum concentration of MWCNTs that can be homogeneously dispersed in aqueous solution is about 1.4 wt%.  相似文献   

4.
Multiwalled carbon nanotube (MWCNT)/acrylonitrile butadiene styrene (ABS) composites were prepared by a processing method using solvent–nonsolvent precipitation. Size distributions of MWCNT agglomerates in aqueous suspension were investigated in order to predict aspect ratio of nanotubes by evaluating the effects of sonication time, MWCNT content, and surfactant. Aspect ratios of MWCNTs were predicted on the basis of the size distribution measurements for MWCNT agglomerates. Sonication time or applied sonic energy has a strong effect on the size distribution of MWCNT agglomerates. Compared with simple shear mixing method, it was shown that this processing method is more suitable for the MWCNT/ABS composites. An electrical percolation threshold was observed for the weight fraction of MWCNTs in the range of about 0.5–1.0 wt.%. Shorter MWCNTs are more suitable to induce fine dispersion, but lead to higher percolation threshold weight fraction. It was illustrated that fine dispersion can overcome the handicap of short length or low aspect ratio of MWCNTs.  相似文献   

5.
Here, we demonstrate an easy method for the preparation of highly electrically conductive polycarbonate (PC)/multiwalled carbon nanotubes (MWCNTs) nanocomposites in the presence of poly(butylene terephthalate) (PBT). In the presence of MWCNTs, PC and PBT formed a miscible blend, and the MWCNTs in the PC matrix were uniformly and homogeneously dispersed after the melt mixing of the PC and PBT–MWCNT mixture. Finally, when the proportion of the PC and PBT–MWCNT mixture in the blend/MWCNT nanocomposites was changed, an electrical conductivity of 6.87 × 10?7 S/cm was obtained in the PC/PBT–MWCNT nanocomposites at an MWCNT loading as low as about 0.35 wt %. Transmission electron microscopy revealed a regular and homogeneous dispersion and distribution of the MWCNTs and formed a continuous conductive network pathway of MWCNTs throughout the matrix phase. The storage modulus and thermal stability of the PC were also enhanced by the presence of a small amount of MWCNTs in the nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Electrically conductive multi-walled nanotube (MWCNT)/poly(vinylidene fluoride) (PVDF) composites with a segregated structure were prepared by high-speed mechanical mixing method. It was found that MWCNTs were uniformly dispersed on polymer particle surfaces. At the MWCNTs composition of 0.1 vol.%, the composites exhibited a dramatic enhancement in electrical conductivity by 11 orders of magnitude. A low percolation threshold was achieved at the CNT concentration of 0.078 vol.%. The mechanical mixing method presented can be adapted to other CNT/polymer composites with a segregated structure.  相似文献   

8.
Conductive polyphenylene sulfide (PPS)/polyamide 6 (PA6)/multiwalled carbon nanotube (MWCNT) composites having 10–30 wt % PA6 and 1 wt % MWCNTs are prepared by melt mixing at 300°C for 8 min using a high concentration PPS/MWCNT masterbatch approach, and the migration kinetics of MWCNTs from thermodynamically unfavored PPS to favored PA6 was investigated. The morphology of the composites was investigated by field emission scanning electron microscopy and transmission electron microscopy, showing the localization of most MWCNTs in the PPS phase and at the interface, being different from the case of direct melt mixing where non‐conductive materials were obtained with most MWCNTs found in the PA6 phase and at the interface. The electrical resistivity and morphology of the materials as a function of time were investigated, showing that the conductive materials can be prepared within a mixing time of 4–16 min because of the slow migration rate of MWCNTs from PPS toward PA6, and MWCNTs can eventually migrate into the PA6 phase after a long mixing time of 30 min. The slow migration rate of MWCNTs was attributed to the high viscosity ratio of the two phases. This article shows a good example where the migration of MWCNTs was slow enough to control and can be used to prepare conductive polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42353.  相似文献   

9.
The effects of different surfactants on the properties of multiwalled carbon nanotubes/polypropylene (MWCNT/PP) nanocomposites prepared by a melt mixing method have been investigated. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as a means of noncovalent functionalization of MWCNTs to help them to be dispersed uniformly into the PP matrix. The effects of these surfactant‐treated MWCNTs on morphological, rheological, thermal, crystalline, mechanical, and electrical properties of MWCNT/PP composites were studied using field emission scanning electron microscopy, optical microscopy, rheometry, tensile, and electrical conductivity tests. It was found that the surfactant‐treatment and micromixing resulted in a great improvement in the state of dispersion of MWCNTs in the polymer matrix, leading to a significant enhancement of Young's modulus and tensile strength of the composites. For example, with the addition of only 2 wt % of SDS‐treated and NaDDBS‐treated MWCNTs, the Young's modulus of PP increased by 61.1 and 86.1%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Lan Lu  Shifeng Wang  Yinxi Zhang 《Carbon》2007,45(13):2621-2627
Styrene-butadiene-styrene tri-block copolymer (SBS) was reinforced with multi-walled carbon nanotubes (MWCNTs) by the interaction through melt mixing. The tensile strength of SBS/MWCNT composites increased with increasing MWCNT content. The interactions between SBS and MWCNTs were characterized by solubility of MWCNTs in tetrahydrofuran, dynamic mechanical analysis, X-ray photoelectron microscope, ultraviolet spectra and transmission electron microscopy. The results showed that there were interactions between MWCNTs and SBS occurred during melt mixing, leading to an improvement of the mechanical properties of SBS/MWCNT composites, as well as the homogeneous dispersion of MWCNTs in SBS. The interactions between MWCNTs and SBS were supposed to consist of the π-π interaction between MWCNTs and the phenyl groups of SBS, as well as the chemical bonding of polybutadiene segments with MWCNTs.  相似文献   

11.
A homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in syndiotactic polystyrene (sPS) is obtained by a simple solution dispersion procedure. MWCNTs were dispersed in N-methyl-2-pyrrolidinone (NMP), and sPS/MWCNT composites are prepared by mixing sPS/NMP solution with MWCNT/NMP dispersion. The composite structure is characterized by scanning electron microscopy and transmission electron microscopy. The effect of MWCNTs on sPS crystallization and the composite properties are studied. The presence of MWCNTs increases the sPS crystallization temperature, broadens the crystallite size distribution and favors the formation of the thermodynamically stable β phase, whereas it has little effect on the sPS γ to α phase transition during heating. By adding only 1.0 wt.% pristine MWCNTs, the increase in the onset degradation temperature of the composite can reach 20 °C. The electrical conductivity is increased from 10−10∼−16 (neat sPS) to 0.135 S m−1 (sPS/MWCNT composite with 3.0 wt.% MWCNT content). Our findings provide a simple and effective method for carbon nanotube dispersion in polymer matrix with dramatically increased electrical conductivity and thermal stability.  相似文献   

12.
Pyrene derivative-containing hydroxyl groups such as 1-hydroxypyrene (PO), 1-pyrenemethanol (PMO) and 1-pyrenebutanol (PBO) were examined as new interfacial agents for bisphenol-A polycarbonate (PC)/multi-walled carbon nanotube (MWCNT) composites. The pyrene units adsorbed onto the MWCNT surface by physisorption and the hydroxyl groups in the pyrene derivatives reacted with the carbonate groups in the PC during melt extrusion. The reactivity of the hydroxyl groups in the pyrene derivatives with the carbonate groups in the PC increased as the nucleophilicity of the hydroxyl groups in the pyrene derivatives increased. As a result, the amount of PC grafted onto the MWCNT surface by the reaction between the PC and the pyrene derivative increased in the order of PBO > PMO > PO. The PC/MWCNT composite used PBO as an interfacial agent exhibited the best interfacial adhesion between the MWCNT and PC and the highest level of MWCNT dispersion in the PC matrix among the composites examined. When the MWCNT content in the composite was fixed, the PC/MWCNT composite with the highest interfacial adhesion energy between the PC and the MWCNT exhibited the best tensile strength and modulus.  相似文献   

13.
The high compatibility of fluorene‐based polyester (FBP‐HX) as a polymer matrix for multiwalled carbon nanotubes (MWCNTs) is discussed. A low surface resistivity due to the fine dispersion of MWCNTs in FBP‐HX and polycarbonate (PC) is reported. With a solution‐casting method, a percolation threshold with the addition of between 0.5 and 1.0 wt % MWCNTs was observed in the MWCNT/PC and MWCNT/FBP‐HX composites. Because of the coverage of FBP‐HX on the MWCNTs, a higher surface resistivity and a higher percolation ratio of the MWCNT/FBP‐HX composites were achieved compared with the values for the MWCNT/PC composites. In the MWCNT/FBP‐HX composites, MWCNTs covered with FBP‐HX were observed by scanning electronic microscopy. Because of the coverage of FBP‐HX on the MWCNTs, FBP‐HX interfered with the electrical pathway between the MWCNTs. The MWCNTs in FBP‐HX were covered with a 5‐nm layer of FBP‐HX, but the MWCNTs in the MWCNT/PC composites were in their naked state. MWCNT/PC sheets demonstrated the specific Raman absorption of the MWCNTs only with the addition of MWCNTs of 1 wt % or above because of the coverage of the surface of the composite sheet by naked MWCNTs. In contrast, MWCNT/FBP‐HX retained the behavior of the matrix resin until a 3 wt % addition of MWCNTs was reached because of the coverage of MWCNTs by the FBP‐HX resin, induced by its high wettability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The morphology, crystallization behavior, electrical conductivity, and thermal stability of polypropylene (PP) modified with disentangled multi-walled carbon nanotubes (MWCNTs) is reported. Slightly oxidized MWCNT clusters were disentangled in solution by mild sonication in the presence of exfoliated α-zirconium phosphate nanoplatelets. The disentangled MWCNTs were isolated using acid-induced coagulation to precipitate the nanoplatelets, and were subsequently reacted with octadecylamine. The recovered functionalized MWCNTs (F-MWCNTs) are disentangled and easily dispersed in a commercial PP matrix, and serve as more efficient nucleating agents than the untreated MWCNTs. The PP/F-MWCNT composites exhibit an extremely low percolation-like transition in electrical conductivity, which is attributed to the preservation of a random dispersion of disentangled F-MWCNTs upon cooling from the melt. The thermal stability of PP in air is also substantially enhanced at loadings below the percolation threshold due to the tremendous interfacial area between the polymer chains and the free radical scavenging F-MWCNTs. The present approach provides an efficient and potentially scalable route for commercial production of conductive semi-crystalline thermoplastics. The method may be adapted to uniformly disperse MWCNTs in other polymer matrices by appropriate selection of surface functionality.  相似文献   

15.
We demonstrate a method that involves melt blending of polycarbonate (PC) and melt‐blended acrylonitrile butadiene styrene (ABS) with multiwall carbon nanotubes (MWCNTs) to prepare electrically conducting PC/MWCNT nanocomposites at significantly low MWCNT loading. The partial solubility of ABS in PC led to a selective dispersion of the MWCNTs in the ABS phase after melt‐blending PC and ABS. Thus, a sudden rise in electrical conductivity (∼108 orders of magnitude) of the nanocomposites was found at 0.328 vol% of MWCNT, which was explained in terms of double percolation phenomena. By optimizing the ratio of PC and the ABS–MWCNT mixture, an electrical conductivity of 5.58 × 10−5 and 7.23 × 10−3 S cm−1 was achieved in the nanocomposites with MWCNT loading as low as 0.458 and 1.188 vol%, respectively. Transmission electron microscopy revealed a good dispersion and distribution of the MWCNTs in the ABS phase, leading to the formation of continuous MWCNT network structure throughout the matrix even at very low MWCNT loading. Storage modulus and thermal stability of the PC were also increased by the presence of a small amount of MWCNTs in the nanocomposites.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
Multi-walled carbon nanotubes (MWCNTs) filled poly(l-lactic acid) (PLLA) and PLLA/poly(d-lactic acid) (PDLA) composites were prepared through a directly melt mixing process. A special crystalline structure of stereocomplex was formed by PLLA and PDLA, which was easily found when mixing two polymers with identical chemical composition but different steric structures. The electrical conductivities were greatly improved by the formation of stereocomplex compared to that of PLLA/MWCNT composites at same MWCNT content. The percolation threshold of the PLLA/PDLA/MWCNT composite at a PLLA/PDLA weight ratio of 50/50 was 0.35 wt%, while being 1.43 wt% of PLLA/MWCNT composites. The X-ray diffraction, non-isothermal and isothermal crystallization results showed that the formation of stereocomplex greatly increased the crystallinity of the composites, meanwhile MWCNTs acted as heterogeneous nucleating agent, which significantly accelerated the nucleation and spherulite growth. Therefore, the PLLA/PDLA/MWCNT composites have a very low percolation threshold due to the volume exclusion effect.  相似文献   

17.
We prepared macromer-grafted polymers (MGPs) containing suitable polymer side chains for improving solubility and pyrene units for improving adsorption on multiwalled carbon nanotube (MWCNT) surfaces, and demonstrated that these MGPs act as MWCNT solubilizers that improve solubility of MWCNTs in typically poor solvents such as alkanes and that improve flowability of polymer/MWCNT composites. The polydimethylsiloxane (PDMS)-MGPs, synthesized using PDMS macromers and pyrene-containing monomers, improved solubility of MWCNTs not only in chloroform but also in hexane, which is a poor solvent for MWCNTs. Moreover, the addition of PDMS-MGP-adsorbed MWCNTs (MWCNT/PDMS-MGPs) to epoxy resin monomers or polybutylene terephthalate (PBT) drastically reduced the viscosity of the obtained epoxy resin monomer/MWCNT/PDMS-MGP mixtures and PBT/MWCNT/PDMS-MGP composites in comparison to the epoxy resin monomer/MWCNT mixtures and PBT/MWCNT composites, respectively. The viscosity of PBT/MWCNT/PDMS-MGP composites including ?1 vol% of MWCNTs, in particular, was almost equal to that of pristine PBT.  相似文献   

18.
This paper describes for the first time a facile, scalable and commercially viable melt blending approach involving use of twin-screw extruder with melt recirculation provision, for uniform dispersion of up to 4.6 vol% multiwall carbon nanotubes (MWCNTs) within polypropylene random copolymer (PPCP). Morphological characterization of PPCP/MWCNT nanoscale composites (NCs) was done using scanning electron microscopy and transmission electron microscopy, which show good dispersion of MWCNTs in the PPCP matrix even at high loadings and confirm the formation of true NCs. The improved dispersion leads to the formation of electrically conducting three dimensional networks of MWCNTs within PPCP matrix at very low percolation threshold (∼0.19 vol%). The attainment of dc conductivity value of ∼10−3 S/cm, tensile strength of ∼42 MPa and good thermal stability for 4.6 vol% MWCNTs loading NC along with electromagnetic interference (EMI) shielding effectiveness (SE) value of −47 dB (>99.99% attenuation), demonstrate its potential for making light weight, mechanically strong and thermally stable EMI shields. These NCs also display specific SE value of ∼−51 dB cm3/g which is highest among unfoamed polymer NCs.  相似文献   

19.
Hao Tong  Hu-Lin Li  Xiao-Gang Zhang 《Carbon》2007,45(12):2424-2432
A new method of synthesis of highly dispersed Pt nanoparticles with large catalytic surface area on multi-walled carbon nanotubes (MWCNTs) under high-intensity ultrasonic field was developed. The method, with low processing temperature at 25 °C, took only about 5 min. The surface characterization of MWCNTs was carried out by fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy methods. The electrochemical surface area and pore volume of MWCNTs were also examined. The result showed that functional groups of the MWCNTs which favored the high loading and high dispersion of particles and electrochemical surface area of MWCNTs were reinforced in the case of high-intensity ultrasonic field. The Pt/MWCNT catalysts were characterized by energy dispersion X-ray spectra analysis (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. The prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt particles was 3.4 ± 0.2 nm. The electrocatalytic properties of Pt/MWCNT composites and kinetic characterization for methanol electro-oxidation were investigated by cyclic voltammetry. The Pt/MWCNT catalysts prepared for 5 min in ultrasonic field present excellent electrochemical activities. The schematic of the reaction was also introduced.  相似文献   

20.
This study focuses on the electrical properties of polycarbonate (PC)/poly(ε‐caprolactone) (PCL)‐multiwall carbon nanotube (MWCNT) nanocomposites. MWCNTs were incorporated into thermoplastic PC matrix by simple melt blending using biodegradable PCL based concentrates with MWCNT loadings (3.5 wt%). Because of the lower interfacial energy between MWCNT and PCL, the nanotubes remain in their excellent dispersion state into matrix polymer. Thus, electrical percolation in PC/PCL‐MWCNT nanocomposites was obtained at lower MWCNT loading rather than direct incorporation of MWCNT into PC matrix. AC and DC electrical conductivity of miscible PC/PCL‐MWCNT nanocomposites were studied in a broad frequency range, 101?106 Hz and resulted in low percolation threshold (pc) of 0.14 wt%, and the critical exponent (t) of 2.09 from the scaling law equation. The plot of logσDC versus p?1/3 showed linear variation and indicated the existence of tunneling conduction among MWCNTs. At low MWCNT loading, the influence of large polymeric gaps between conducting clusters is the reason for the frequency dependent electrical conductivity. Transmission electron microscopy and field emission scanning electron microscopy showed that MWCNTs were homogeneously dispersed and developed a continuous interconnected network path throughout the matrix phase and miscibility behavior of the polymer blend. POLYM. ENG. SCI., 54:646–659, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号