首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
目的采用复合模式介质Capto core 700纯化轮状病毒(rotavirus,RV),去除培养液中的残余细胞宿主蛋白和DNA,提高病毒收率。方法将RV LH9毒种接种Vero细胞,制备RV原液,澄清、超滤后,用Capto core 700纯化:样品LH9、LH9+150 mmol/L Na Cl[以缓冲液A(20 mmol/L PB+150 mmol/L Na Cl,p H 7.0)作为缓冲液]上样纯化分别标记为A、B组合,样品LH9+300 mmol/L Na Cl[以缓冲液B(20mmol/L PB+300 mmol/L Na Cl,p H 7.0)作为缓冲液]上样纯化标记为C组合,样品LH9+450 mmol/L Na Cl[以缓冲液C(20 mmol/L PB+450 mmol/L Na Cl,p H 7.0)作为缓冲液]上样纯化标记为D组合,洗脱,收集流穿峰,检测纯化后病毒的滴度和收率、RV RNA、RV抗原性、残余宿主细胞蛋白(HCP)和DNA;并用初步筛选出的纯化组合纯化3批RV超滤浓缩液,检测各项指标,进行进一步验证。结果用20 mmol/L PB+150 mmol/L Na CL缓冲体系和样品中加入150 mmol/L Na Cl的组合纯化RV,病毒收率在80%以上,病毒核酸完整,其抗原性未发生改变,可去除94%以上的HCP,残余DNA符合《中国药典》三部(2010版)标准。结论 Capto core 700纯化RV收率和残余蛋白去除效率均较高,组合B操作相对简便,工艺时间短,病毒收率高,更适于RV的纯化。  相似文献   

2.
Mesoporous silica nanoparticles (MSNPs) have been used in variety of applications due to their morphology and porous structure. This work reports the one-pot synthesis of ultrahydrophobic MSNPs using N-cetyl-n,n,n trimethyl ammonium bromide as a cationic surfactant template and ethanol (EtOH) as a cosolvent to form mesopores in the MSNPs. The effects of EtOH on the size and the pore structure of the MSNPs were studied by scanning electron microscopy and transmission electron microscopy. The results show that an addition of EtOH led to an enlargement of the MSNPs and a change in pore structure from a lamellar structure to a radially oriented structure. Co-condensation with two different types of fluoroalkyl silanes; trimethyl(fluoromethyl)silane, and trichloro(1H,1H,2H,2H-perfluorooctyl)silane provided low surface energy MSNPs with a core–shell structure. An assembly on the surface of these F-MSNPs generated nanostructure surface roughness rendering an improvement in surface wettability with water contact angle of 158.6°, which is a characteristic of oleophobic and ultrahydrophobic material.  相似文献   

3.
Using silicylacrylate (SPMA: 3-(trimethoxysilyl)propyl methacrylate) and acrylic acid as functional monomers, silicylacrylate copolymer core–shell emulsion (SiA-CSE) was prepared by emulsion polymerization. The relationships between stability of SiA-CSE and contents of SPMA, emulsifier, initiator and copolymerization temperature were investigated. Moreover, the structure of SiA-CSE was characterized by FTIR, TEM and TGA techniques. The SiA-CSE was applied to prepare the silicylacrylate copolymer humidity coatings (SiA-CSE-C) by compositing with pigments and porous fillers. Based on measuring the basic performance of copolymer emulsion film and SiA-CSE coatings, the humidifying function of SiA-CSE coatings was investigated. In conclusion, SPMA could improve the adhesion of SiA-CSE film and water resistance of the coatings. The obtained coatings showed excellent humidity-sensitivity and humidity retention, which could be used as the interior walls coatings in the building.  相似文献   

4.
Thermosensitive core–shell nanoparticles were synthesized by semicontinuous heterophase polymerization of styrene, followed by a seeded polymerization for forming a shell of poly(N-isopropyl acrylamide) (PNIPAM). Nanoparticles characterization by scanning transmission electronic microscopy showed core–shell morphology with average particle diameters around 40 nm. An inverse dependence of the particle size with temperature in the range 20–55 °C was identified by quasielastic light scattering measurements. As was expected for core–shell particles with PNIPAM as the shell, a volume phase transition near 32 °C was detected. In spite of thermosensitive properties of core–shell nanoparticles synthesized here, the volume percentage loss values were not so high, probably due to their relatively low content of PNIPAM.  相似文献   

5.
Shell-crosslinked core–shell nanoparticles (SCCSN) of 63–104 nm in diameter and containing 79.1 wt% crosslinked polystyrene (PS) shell of 16.5–37.0 nm in thickness were prepared by miniemulsion polymerization of styrene in the presence of silane modified nanosilica. The PS shell was crosslinked using divinyl benzene in order to anchor the shell on the nanoparticle surface, to segregate the silica core from the matrix and to avoid entanglement between the shell PS and the matrix macromolecules in SCCSN filled PS composites. Steady and dynamic rheologies of SCCSN filled PS were compared with bare silica filled PS. The SCCSN filled PS composites exhibited exceedingly good rheological stability than silica filled ones during annealing. Both bare silica and SCCSN introduced a non-terminal dynamic rheology while they did not introduce additional mechanism responsible for origination of nonlinear steady flow except for macromolecular disentanglement of the PS matrix. The reinforcement of SCCSN to PS was related to the silica core even though the crosslinked shell could effectively eliminate filler aggregation as the case of silica filled PS.  相似文献   

6.
Thermosetting acrylic latexes were synthesized using butyl acrylate (BA), methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA) via seeded two-stage process. A 2-level factorial experimental design was employed to investigate the effect of hydroxyl (core phase), carboxylate (shell phase) groups, and type of surfactant (Triton X200, Tergitol XJ) on the mechanical properties of thermosetting latexes. Eight latexes with varying concentration of HEMA, MAA and two types of surfactants were synthesized and crosslinked with three crosslinkers. Latex functionality for crosslinking was located in the core only, the shell only, and both the core–shell with varying concentrations. Melamine-formaldehyde (hexamethoxymethyl melamine) resin was employed to crosslink hydroxyl functionalities in the core. Carboxylic acid groups in the shell were crosslinked with zinc ammonium carbonate. HDI isocyanurate (Desmodur N3300A) were used to crosslink with hydroxyl or carboxyl functional groups in core and shell. The mechanical properties of coatings were evaluated in terms of tensile properties, cross-hatch adhesion, pencil hardness, and impact resistance. Design of experiment (DOE) was utilized to investigate the effect of variables on mechanical properties of crosslinked thermoset films.  相似文献   

7.
A new series of core–shell structured silver/polyimide (PI) nanocomposites was prepared by in situ polymerization followed by the chemical imidization of poly(amic acid) (PAA, precursor of PI) at a low temperature. The TEM images showed that the silver cores of the nanocomposites were encapsulated with homogeneous shells with thickness of 4 and 8 nm at silver contents of 90 and 60 %, respectively. The shell thickness was controlled by varying the content of PAA. FTIR spectroscopic analysis indicated that the imide ring formation occurred after the chemical imidization. The Ag/PI nanocomposites showed excellent thermal stability and exhibited only 10 % weight loss at 300 °C in the air. Moreover, percolation was observed at silver weight fractions close to the critical value, and the maximum dielectric permittivity of the nanocomposites was 120, which is about 40 times higher than that of pristine PI.  相似文献   

8.
A novel crosslinked core–shell emulsion of waterborne polyurethane-acrylic copolymers (PUA) was successfully synthesized by emulsion polymerization. The average particle size of the PUA particle was approximately 130 nm and its core–shell morphology was proved with transmission electron microscopy (TEM) and dynamic light scattering (DLS), whose structure was also confirmed by FT-IR and TGA. PUA was applied to prepare the humidity controlling coatings (PUA-C) by compositing with pigments and porous fillers. The structure and properties of humidity controlling coatings were investigated, with particular attention to the effects of the humidity controlling. The surface morphology of the PUA-C was observed by scanning electron microscope (SEM). The humidity controlling coatings showed excellent properties of humidity sensitivity and humidity retention.  相似文献   

9.
Titanium dioxide nanoparticles are precisely segregated in or on polymer submicron particles domains by phase separation between a polymer and a hydrophobic liquid or between two different polymers. The inorganic nanoparticles can be located either in the core, as a patch on the surface of the polymer particle, as a disk, or in the middle of Janus polymer particles. In the latter case, tricompartment submicron particles arranged in a linear triblock fashion are fabricated.  相似文献   

10.
In this work, we developed a simple and cost-effective approach to prepare the hierarchical NiO/CuO nanocomposite without any surfactant. The morphology and structure of the hybrid nanostructure was examined by focus ion beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HRTEM). Furthermore, the electrochemical properties of the hierarchical NiO/CuO nanocomposite electrodes were elucidated by cyclic voltammograms, galvanostatic charge/discharge tests and electrochemical impedance spectroscopy in 6 M KOH electrolyte. The electrochemical results demonstrated that this unique NiO/CuO nanostructure exhibited a specific capacitance of 280 F g−1 and excellent cycling stability (91.4% retention after 3000 cycles). The remarkable electrochemical performance coupled with the facile synthesis of the hierarchical NiO/CuO nanocomposite indicated the great application potential in supercapacitors.  相似文献   

11.
In this study, a pH-controlled core–shell structured site-specific magnetic nanocomposite for drug delivery was reported. Superparamagnetic Fe3O4 nanoparticles were selected to build its core for magnetic guiding purpose and mesoporous silica molecular sieve MCM-41 was chosen to construct its outer shell. The MCM-41 outer shell has highly ordered hexagonal tunnels therefore would offered enough cargo space for drug molecules. An organic ligand N1-(5H-cyclopenta[1,2-b:5,4-b′]dipyridin-5-ylidene)benzene-1,4-diamine (denoted as Dafo-Ph-NH2) was linked to the molecular sieve outer shell. There are two nitrogen atoms at the end of the ligand which are able to donate their lone pair electrons. Acidic drug molecules therefore can be bound to the ligand via weak acid–base reaction. Those drug molecules can be release in low pH solution since the H+ in the solution will compete with the ligand. The final composite was analyzed by electron microscope images, XRD, IR spectra, thermogravimetry and N2 adsorption/desorption. Its bio-compatibility was evaluated by MTT using L929 fibroblast cell line. Our Dafo-MCM-41@Fe3O4 composite shows pH-controlled and site-specific smart release properties for aspirin in vitro.  相似文献   

12.
Multilayer core–shell poly (styrene-butyl acrylate) latex particles were synthesized via semi-continuous emulsion polymerization, and the process was monitored by a dynamic laser scattering (DLS). The layers of the latex particles were designed to have progressively decreasing glass transition temperatures (Tg) from the core (layer 1) to the outmost shell (layer 4), which was achieved by varying the mass ratio of butyl acrylate (BA) to styrene (St) in the synthesis of each layer. Divinylbenzene (DVB) was added as the crosslinking agent in each layer except for the outmost layer in order to ensure that a continuous film can be formed at room temperature. The damping properties of the formed films as well as the influences of synthesis variables, including the content of DVB added in the internal layers (i.e., layers 1, 2, and 3), the total mass ratio and sequence between layers 3 and 4, and the Tg of each layer were studied by dynamic mechanical analysis (DMA). The results showed that four-layer core–shell latex particles with proper DVB content in each layer exhibited the best damping properties, with a broad effective damping range (tan δ > 0.3) ranging from −12.0 °C to 97.2 °C. The widening of the damping peak can be explained by the formation of a gradient IPN structure in latex particles. Furthermore, the morphology of the formed films was studied by AFM in tapping mode.  相似文献   

13.
Multiferroic (MF) composites based on nanoparticles consisting of a silica core and a shell of spin-variable Fe(III) complexes in a polymer matrix (polystyrene) were synthesized and characterized by different methods. The nanoparticles had the formula 80SiO2·20{Fe[OSi(Me)(OEt)2]3}, and their particle size was on the order of 5–7 nm. Dielectric and electron spin resonance studies showed the presence of two types of Fe ions in the nanocomposite. Iron ions in the low-spin state [Fe(III)-LS] and iron ions in the high-spin state [Fe(III)-HS], which were bound by indirect exchange interactions through oxygen and silicon atoms {[Fe(III)-LS]─O─Si─O─[Fe(III)-HS]} were responsible for the MF properties of the composites with core–shell nanoparticles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47681.  相似文献   

14.
The kinetics of H_2S removal by zinc oxide desulfurizer was studied through thermogravimetricanalysis.The experimental results show that desulfurization rate was controlled,at high temperatureand low conversion,by the chemical reaction rate,and at low temperature and high conversion by thegrain diffusion rate.The reaction is first order with respect to H_2S concentration in the differentcontrolled stages.The kinetic behavior can be modeled through the employment of the shrinking coremodel.The values of the model parameters were determined.The variation tendencies with temperatureand concentration of H_2S at the controlled stages were discussed.  相似文献   

15.
A core–shell structure of fluorine-containing polyacrylate latex was synthesized by UV-initiated two-stage microemulsion polymerization from styrene (St) and hexafluorobutyl acrylate (HFA) in the presence of Irgacure 2959 as hydrophilic photoinitiator at room temperature. The first polymerization stage took 12 min and the second stage took 10 min. The conversions of the first and the second polymerization stages were about 60 and 85 %, respectively. Fourier transform infrared (FTIR) spectra, transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and contact angle analysis were used to characterize the properties of latexes and their films. The DLS analysis results indicated that the size of the fluorine-containing nanoparticle is about 20 nm. The TEM photos showed that the particles have core–shell structure and some of the cores are located in the center and the others deviate from the center of particles. From the FTIR and XPS results, we can infer that the fluorine monomer could be introduced into the copolymer and the fluorine-containing polyacrylate mainly occupies the shell part. The TGA results indicated that the fluorine-containing polyacrylate copolymers exhibited higher thermal stability than that of the fluorine-free one. The contact angle analysis results showed that fluorine monomers make the film surface more hydrophobic.  相似文献   

16.
A thermally reversible hydrogel composed of a three-arm star copolymer with a specific host β-cyclodextrin (β-CD) center has been developed. The synthesis of this star copolymer initiates with β-CD core, from which sequential polymerization of a temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) block and a hydrophilic poly(N,N-dimethylacrylamide) (PDMA) block as asymmetric arms (named β-CD-g-(PNIPAM-b-PDMA)3) is performed via RAFT protocol. Below the lower critical solution temperature (LCST) of PNIPAM segment, the polymer is of good water-solubility and exhibits a sol state. Upon thermal stimulus, free-standing hydrogels can be formed rapidly at sufficiently high concentrations. By comparing the sol–gel transition of the star polymer with that of its linear counterpart without this feature, we concluded that the special star-shape topology and the thermal-collapsed PNIPAM chains were responsible for this gelation behavior. The rheology measurements indicate the mechanical properties of the polymer hydrogels and the thermal reversibility of the sol–gel transition. Using Rhodamine B as a molecule to model a typical drug, we realize the favorable encapsulation and releasing process from the hydrogel, demonstrating that this star polymer has the potential to function as an injectable hydrogel for drug delivery and gene transport.  相似文献   

17.
The polyvinylpyrrolidone (PVP)/poly(vinylidene fluoride) (PVDF) core–shell nanofiber mats with superhydrophobic surface have been prepared via electrospinning its homogeneous blending solutions, and the formation of the core–shell structure was achieved by the thermal induced phase separation assisted with the low surface tension of PVDF. The electrospinnability of the blending solutions was also investigated by varying the blending ratio of the PVP and PVDF, and it enhanced with the increase of PVP content. SEM and TEM results showed that the fibers size was varied in the range of 100 nm–600 nm with smooth surface and core–shell structure. The composition of the shell layer was determined by the XPS analysis, and further confirmed by water contact angle (WCA) testing. As the fraction of PVDF exceeding PVP in the electrospinning solutions, the nanofiber mats showed superhydrophobic property with the WCA above 120°. It indicated that the PVDF was concentrated in the shell layer of the fibers. X-Ray diffraction (XRD) and attenuated total reflection infrared spectroscopy (ATR-IR) analysis indicated that the PVDF was aggregated with the β-phase crystallite as dominant crystallite. The nanofiber mats with the gas breathability and watertightness ability due to the porous structure and superhydrophobic would be potential applied in wound healing.  相似文献   

18.
Superabsorbent core–shell particles were synthesized via a two-step process. A silica core was prepared by co-condensation of tetraethyl orthosilicate and vinyl triethoxysilane. The vinyl-functionalized silica particles were then polymerized with acrylamide monomer via free-radical polymerization to yield silica-polyacrylamide (PAM) hybrid particles. The crosslinking density and porosity of PAM on the hybrid particles were controlled by adjusting the concentration of the crosslinker, n,n′-methylenebisacrylamide (MBA). The structure of core–shell particles was confirmed by scanning and transmission electron microscopy techniques. The hybrid particles with 3.0%MBA could absorb water up to 70 g/g. These hybrid particles also removed 80% of methylene blue from solution within 24 h and this efficacy was maintained for seven cycles. The weight remaining of the hybrid particles after nine cycles was higher than that of pure PAM after three cycles indicating the high durability and reusability of the core–shell particles. POLYM. ENG. SCI., 60: 306–313, 2019. © 2019 Society of Plastics Engineers  相似文献   

19.
Fe3O4@polydivinylbenzene (PDVB) submicrospheres were prepared via distillation–precipitation polymerization of DVB in the presence of submicron magnetite colloid nanocrystal clusters (MCNCs) as seeds. The surface of the MCNCs was modified with vinyl groups before PDVB encapsulation. The resulting Fe3O4@PDVB particles showed a well-defined core–shell structure, and the shell thickness could be readily controlled by the DVB dosage. A lowly cross-linked poly(methacrylic acid) (PMAA) layer could be further coated onto the highly cross-linked PDVB shell via a second-stage DPP process, suggesting the presence of residual vinyl groups on the surface of the Fe3O4@PDVB particles. The hybrid particles showed rather high magnetization and near superparamagnetism, hence capable of easy magnetic separation.  相似文献   

20.
The silica sol/fluoroacrylate core?Cshell nanocomposite emulsion was successfully synthesized via traditional emulsion polymerization through grafting of KH-570 onto silica particles. Comparing the performance of the polyacrylate copolymer, the fluorinated polyacrylate copolymer and the silica sol/fluoroacrylate core?Cshell nanocomposite emulsion, we can come to a conclusion that the silica sol/fluoroacrylate core?Cshell nanocomposite emulsion presents significantly excellent performance in all aspects. The products were characterized by Fourier transform infrared (FTIR), photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), thermogravimetry (TGA), Contact angle and UV?Cvis analyses techniques. The chemical structure of polyacrylate copolymer, fluorinated polyacrylate copolymer and silica sol/fluoroacrylate nanocomposite were detected by FTIR. The size and stability of emulsion latex particles were determined by PCS technique. TEM analysis confirmed that the resultant latex particle has the core?Cshell structure, obviously. The water absorption and contact angle data also showed that the silica sol/fluoroacrylate nanocomposite film has good hydrophobic performance. TGA analysis indicated the weight loss of the silica sol/fluoroacrylate nanocomposite film begins at around 350?°C which testifies its good thermal stability. The UV?Cvis spectroscopy analysis showed that the silica sol/fluoroacrylate nanocomposite film possess UV?Cvis shielding effect when the added volume amount of KH570 modified silica sol is up to 5?mL. Therefore, the excellent properties of hydrophobicity, thermodynamics and resistance to ultraviolet provide the silica sol/fluoroacrylate nanocomposite film with potential applications in variety fields. In addition, the formation mechanism of core?Cshell structure silica sol/fluoroacrylate nanocomposite latex particles was speculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号