共查询到20条相似文献,搜索用时 0 毫秒
1.
The little amount of internal double bonds were introduced in poly (butyl acrylate) (PBA) and poly (ethyl acrylate) (PEA) through copolymerizing with isoprene (IP). The tanδ of PBA-co-IP (BA-IP copolymer) and PEA-co-IP (EA-IP copolymer) exhibited an asymmetric double-peak structure with a shoulder at higher temperature side and a maximum at lower temperature side, while the tanδ of PBA and PEA generally displayed single-peak structure. The relaxation spectra showed motion units whose relaxation time were larger than 100 s appeared; so the shoulders were preliminarily determined as the slower processes. The chain-ring assumption was used to analyze this phenomenon. The single bonds that are adjunct to internal double bonds were thought as the “rings” and segments that locate between two neighboring single bonds were thought as the “chains”. Because “rings” single bonds had larger rotation ability than general single bonds, the motions of “chains” between two neighboring “rings” would be improved. Thus, PBA-co-IP and PEA-co-IP displayed asymmetric tanδ curves in mechanical spectra. 相似文献
2.
The exact molecular chain orientation of poly(β-hydroxybutyrate) (PHB) in ultrathin films was successfully probed using surface-sensitive, grazing incidence X-ray diffraction techniques. The crystal orientation of spin-coated PHB films was very sensitive to free surface and thermal annealing. In pristine films, the free surface easily exerted its influence on PHB crystallization and caused lamellar orientation with the b-axis perpendicular to the film surface. The effect of the buried interface increased with temperature. With the increase in thermal annealing temperature, the lamellar orientation changed from the b-axis being perpendicular to the film surface to the c-axis becoming perpendicular to the film surface. As film thickness increased, the temperature, at which the lamellae with the b-axes oriented normal to the film surface disappeared, increased. The thickness and temperature dependence of the crystallization behavior of PHB in an ultrathin film could be attributed to the competition between the effects of the free surface and the buried interface. 相似文献
3.
A film iodinated at solution state before casting (BIBC film) and a film iodinated after casting (BIAC film) were prepared
by casting an aqueous solution of poly(vinyl alcohol) (PVA) including I2/KI and boric acid, and by successively soaking the PVA film in aqueous solutions of boric acid and I2/KI, respectively. The boric acid-induced and I2/KI-induced weight gains relative to the PVA were 3, 5, 7, and 10%, and 3, 5, 10, and 20%, respectively. The effects of boric
acid and iodine on the crystallinity and drawability of the films were investigated. Although the crystalline structure of
the BIAC films was not affected by boric acid, the boric acids in the PVA solution containing I2/KI may have formed intra-molecular cross-links on the PVA chain to accelerate the formation of the PVA–iodine complex evenly,
and subsequently interrupt the PVA crystallization through the BIBC film formation to render the resultant film slightly crystalline
or practically amorphous. This occurred even at a much lower I2/KI-induced weight gain (20%) than the minimum weight gain (125%) at which the iodinated at solution state before casting
film without boric acid indicated a practically amorphous state. The maximum draw ratio of the films generally decreased with
increasing boric acid content, which was mainly attributed to the increase of the extended segments of the PVA chains in the
amorphous region due to the cross-links formed with the boric acids. The maximum draw ratios of the BIBC films tended to decrease
more severely than those of the BIAC films. 相似文献
4.
Biodegradable polyrotaxane (PR)-based triblock copolymers were synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAAm) initiated with polypseudorotaxanes (PPRs) consisting of a distal 2-bromopropiomyl bromide end-capping poly(ε-caprolactone) (Br-PCL-Br) and a varying amount of α-cyclodextrins (α-CDs) in the presence of Cu(I)Br/PMDETA at 25 °C in aqueous solution. The copolymers were featured by relatively higher yields from 46.0% to 82.8% as compared with previous reports. Their structure was characterized in detail by using 1H NMR, 13C CP/MAS NMR, GPC, WXRD, DSC and TGA analyses. When a feed molar ratio of NIPAAm to Br-PCL-Br was changed from 50 to 200, the degree of polymerization of PNIPAAm blocks attached to two ends of PPRs was in a range of 158–500. About one third of the added α-CDs were still entrapped on the central PCL chain after the ATRP process. Attaching PNIPAAm rendered the copolymers soluble in aqueous solution showing the thermo-responsibility as evidenced by turbidity measurements. 相似文献
5.
A series of poly(ω-pentadecalactone) (PPDL) samples, synthesized by lipase catalysis, were prepared by systematic variation of reaction time and water content. These samples possessed weight-average molecular weights (Mw), determined by multi-angle laser light scattering (MALLS), from 2.5 × 104 to 48.1 × 104. Cold-drawing tensile tests at room temperature of PPDL samples with Mw between 4.5 × 104 and 8.1 × 104 showed a brittle-to-ductile transition. For PPDL with Mw of 8.1 × 104, inter-fibrillar slippage dominates during deformation until fracture. Increasing Mw above 18.9 × 104 resulted in enhanced entanglement network strength and strain-hardening. The high Mw samples also exhibited tough properties with elongation at break about 650% and tensile strength about 60.8 MPa, comparable to linear high density polyethylene (HDPE). Relationships among molecular weight, Young's modulus, stress, strain at yield, melting and crystallization enthalpy (by differential scanning calorimetry, DSC) and crystallinity (from wide-angle X-ray diffraction, WAXD) were correlated for PPDL samples. Similarities and differences of linear HDPE and PPDL molecular weight dependence on their mechanical and thermal properties were also compared. 相似文献
6.
Biodegradable segmented poly(ester-urethane)s derived from telechelic dihydroxy-poly[(R)-3-hydroxybutyrate], acting as hard segments, and poly(ε-caprolactone)-diols, acting as soft segments, using 1,6-hexamethylene diisocyanate, as non toxic connecting agent, were synthesized. The copolymers were characterized with regard to their molecular weight by GPC and their main thermal transitions by DSC. These copolymers as well as PHB were exposed to UV-irradiation for different time intervals and the changes in the chemical structure were analyzed by FTIR spectroscopy. Under our experimental conditions, it was found that the increase of irradiation time was accompanied by increase of the proportion of the gel fraction and the decrease of the intrinsic viscosity of the soluble fraction of the investigated copolymers. The biodegradability of PHB and poly(ester-urethane) sample containing ~40 wt% PHB before and after UV-irradiation was investigated under soil burial. The results showed that the photolysis in air prior to biodegradation increased the rate of degradation. 相似文献
7.
This article describes the preparation and characterization of composites containing poly(ethylene-co-butyl acrylate) (EBA–13 and EBA–28 with 13 and 28 wt % butyl acrylate, respectively) and 2–12 wt % (0.5–3 vol %) of aluminum oxide nanoparticles (two types differing in specific surface area and hydroxyl-group concentration; uncoated and coated with, respectively, octyltriethoxysilane and aminopropyltriethoxysilane). A greater surface coverage was obtained with aminopropyltriethoxysilane than with octyltriethoxysilane. An overall good dispersion was obtained in the EBA-13 composites prepared by extrusion compounding. Composites with octyltriethoxysilane-coated nanoparticles showed the best dispersion. The addition of the nanoparticles to EBA–28 resulted in poor dispersion, probably due to insufficiently high shear forces acting during extrusion mixing which were unable to break down nanoparticle agglomerates. The nanoparticles had no effect on the crystallization kinetics in the EBA–13 composites, but in the EBA–28 composites the presence of the nanoparticles led to an increase in the crystallization peak temperature, suggesting that the nanoparticles had a nucleating effect in this particular polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
8.
Robert J. Hamers Courtney Stavis Ankit Pokhrel Ryan Franking Rose E. Ruther Xiaoyu Wang Michelle C. Cooperrider Hongjun Zheng John A. Carlisle James E. Butler 《Diamond and Related Materials》2011,20(5-6):733-742
We explore the use of single-bounce infrared reflection–absorption spectroscopy (IRRAS) to characterize molecular and biomolecular layers on doped and undoped diamond thin films on silicon substrates. Experimental measurements of thin layers of poly(methyl methacrylate) (PMMA) as a function of polarization and angle of incidence were used to characterize the intensity, frequency, and symmetry of the vibrational features. Fresnel multilayer reflectivity calculations were used to identify optimized conditions and to understand the observed trends. The measurements were then extended to characterize the nonspecific binding of fibrinogen as a model system. Finally, we present data demonstrating the ability to characterize Escherichia coli antibodies covalently linked to diamond surfaces, including changes in Amide I band due to conformational changes associated with protein denaturation. Our results show that dispersion and reflection effects under different experimental conditions lead to changes in the frequency of the PMMA CO mode and the fibrinogen Amide I band that are comparable to the changes due to different protein conformations. This has significant implications for the use of the Amide I feature to analyze the conformation of proteins on diamond thin film and highlights the utility of Fresnel modeling in the interpretation of FTIR spectra at surfaces. 相似文献
9.
Chien-Hsin Chen Ming-Chien Yang Da-Guang Yu Chi-Hsiung Jou 《Journal of Polymer Research》2018,25(4):92
In this study, poly(L-lactide) (PLLA) non-woven mats were prepared by electrospinning technique, followed by treating with oxygen plasma and grafting with 3-aminopropyl triethoxysilane (APTES), then immersed in poly(γ-glutamic acid) (γ-PGA) solution to form a layer of γ-PGA on the surface. In so doing, hydrophobic PLLA would become highly hydrophilic. Through characterization of hydrophilicity and biocompatibility, the feasibility of these modified mats for wound dressing was evaluated. The results show that after the grafting of γ-PGA, the swelling ratio increased greatly from 7% for pristine PLLA mat to 321% for γ-PGA-grafted PLLA mat, and the contact angle decreased from 112° to 25°. In vitro cytocompatibility tests against L929 fibroblast show that γ-PGA-grafted PLLA was non-cytotoxic. In addition, the proliferation of fibroblasts was higher on γ-PGA-grafted PLLA than on pristine PLLA. 相似文献
10.
Adriaan Stephanus Luyt Ana Antunes Anton Popelka Abdelrahman Mahmoud Mohammad Korany Hassan Peter Kasak 《应用聚合物科学杂志》2021,138(43):51266
The effect of accelerated weathering degradation on the properties of poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends and PLA/PCL/titanium (IV) dioxide (TiO2) nanocomposites are presented in this paper. The results show that both polymers are susceptible to weathering degradation, but their degradation rates are different and are also influenced by the presence of TiO2 in the samples. Visual, microscopic and atomic force microsocpy observations of the surface after accelerated weathering tests confirmed that degradation occurred faster in the PLA/PCL blends than in the PLA/PCL/TiO2 nanocomposites. The X-ray diffraction results showed the degradation of PCL in the disappearance of its characteristic peaks over weathering time, and also confirmed that PLA lost its amorphous character and developed crystals from the shorter chains formed as a result of degradative chain scission. It was further observed that the presence of TiO2 retarded the degradation of both PLA and PCL. These results were supported by the differential scanning calorimetry results. The thermogravimetric analysis results confirmed that that PLA and PCL respectively influenced each other's thermal degradation, and that TiO2 played a role in the thermal degradation of both PLA and PCL. The tensile properties of both PLA/PCL and PLA/PCL/TiO2 were significantly reduced through weathering exposure and the incorporation of TiO2. 相似文献
11.
12.
Microcapsules containing tetrachloroethylene as an internal phase were prepared by in situ polymerization of urea–formaldehyde
(UF) without prepolymerization. The effects of different emulsifiers on the process of microencapsulation and morphology of
microcapsules were investigated. The results show that the emulsifier gum arabic (GA) can effectively slow down the deposition
rate of resin onto the oil/water interface, which can lead to smooth and compact surface of microcapsules. The surface activity
of GA was also enhanced by complex formation of gum arabic and sodium dodecyl benzene sulfonate. The microcapsules represent
good thermal and barrier property as a result of the formation of capsule wall with compact microstructure. 相似文献
13.
《国际智能与纳米材料杂志》2013,4(1):9-21
The Pd content dependence of the crystallization process of Ti–Ni–(19.1–35.3)Pd (at. %) thin films fabricated by a sputter-deposition method was investigated. Ti–Ni–(19.1–26.1)Pd (at. %) as-deposited thin films were found to be amorphous, whereas Ti–Ni–(29.1–35.3)Pd (at. %) thin films were crystalline in the as-deposited condition. Both the crystallization temperature and activation energy for the crystallization of the amorphous thin films decrease with increasing Pd content. The shape memory effect was confirmed in the in situ crystallized thin film. The finer grain size in the in situ crystallized thin film results in a higher critical stress for slip and a smaller recovery strain when compared with the thin film crystallized by post annealing. 相似文献
14.
Summary The synthesis of poly(-thiophenediyl)benzylidene (PTB) with high molecular weight is described. Number-average degrees of polymerization reached about 74. The characterizations of the polymer was investigated by 1H-NMR, 13C-NMR, IR, and UV-VIS spectra. The polymer with well-defined structure and high molecular weight was obtained by polymerization at low temperature and in polar solvent. This polymer was thermally stable and a thermal decomposition took place at 391°C under nitrogen and at 370°C under air. The glass transformation temperature was 117°C and this PTB was nonfusible. 相似文献
15.
Stereocomplex formation based on chiral recognition was examined in racemic mixtures (PnG) of α-helical poly(γ-alkyl l-glutamate) (PnLG) and poly(γ-alkyl d-glutamate) (PnDG), where n, the carbon number of the side-chain alkyl groups, was varied from 1 to 6. When enantiomorphic solutions of PnG with relatively short side chains of n = 1–3 were mixed in DMF, precipitation occurred as fine fibrils with an equimolar content of PnLG and PnDG, demonstrating the formation of a stereocomplex of l and d molecules. The precipitates included 10–12 vol% of DMF solvent and possessed tetragonal packing structure of α-helices. The tetragonal packing symmetry, which is unusual in the α-helical polypeptide system, was considered to be produced by “knobs-into-holes” packing of side chains between l and d helices regularly arrayed in a lattice. 相似文献
16.
Al Mamun 《Polymer Engineering and Science》2020,60(11):2702-2709
A quantitative analysis method for the distribution of noncrystalline poly(butadiene) component in poly(ε-caprolactone)/poly(butadiene) (PCL/PB) binary blends have been analyzed by advance application of Raman spectroscopy, optical microscopy, and differential scanning calorimetry (DSC) techniques. Thin films of different compositions of PCL/PB binary blends were prepared from solution and isothermally crystallized at a certain temperature. After calibration with real data, quantitative analyses by Raman spectroscopy revealed the amorphous PB are trapped inside the PCL crystals. Polarized optical microscopy and real time atomic force microscopy were used to collect data for the crystal morphology and crystal growth rate. For pure PCL crystals, a morphology of truncated lozenge shape was observed, independent of crystallization temperature and regardless of the blends compositions. For the pure PCL and their blends, almost unique crystal growth rate was found. The miscibility behaviors using DSC were drawn through melting point depression method. The Hoffman-Weeks extrapolations of the blends were found to be linear and identical with those of the neat PCL. The interaction parameter for the blends indicating that the PCL and PB blends have no intermolecular interaction, confirming the blends are immiscible. Despite the immiscibility of the blend, the PCL crystals do not bend during the growth process and do not reduce the growth rate as they do for miscible blend systems. 相似文献
17.
The nanoscale architectures evident in the thin films of self-assembling hybrid block copolymers—which are tailored to inherit the advantageous properties of their constituent synthetic (homo)polymer and polypeptide blocks—have continued to inspire a variety of new applications in different fields, including biomedicine. The thin films of symmetric hybrid block copolymer, α-methoxy-poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine], MPEG112-b-PLL(Z)17, were prepared by solvent casting in five different solvents and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy, Thermogravimetric analysis, Derivative Thermogravimetric analysis, Differential Scanning Calorimetry, Contact Angle goniometry, Wide-Angle X-ray Diffraction, and Scanning Electron Microscopy. Film thickness was estimated to be 51 ± 23 μm by the “step-height” method, using a thickness gauge. Although no significant change to the block copolymer’s microstructure was observed, its solvent-cast films displayed divergent physical and thermal properties. The resulting cast films proved more thermally stable than the bulk but indicated greater block miscibility. Additionally, the thin films of MPEG112-b-PLL(Z)17 preserved the microphase separation exhibited by the bulk copolymer albeit with appreciable loss of crystallinity. The surface properties of the polymer–air interface were diverse as were the effects of the casting solvents. Oriented equilibrium morphologies are also evident in some of the as-cast thin films. 相似文献
18.
The conducting and relaxation dynamics of Ag+ ions in poly(ethylene oxide) (PEO)–silver triflate (AgCF3SO3) solid polymer electrolytes (SPEs) containing nanosize SiO2 filler and poly(ethylene glycol) (PEG) as a plasticizer were studied in the frequency range 10 Hz to 10 MHz and in the temperature range 303–328 K. The comparatively lower conductivity of the plasticized (PEG) PEO–AgCF3SO3–SiO2 nanocomposite electrolyte system was examined by analysis of the Fourier transform infrared (FTIR) spectroscopy and conductivity data. The electric modulus (M″) properties of the SPE systems were investigated. A shift of the M″ peak spectra with frequency was found to depend on the translation ion dynamics and the conductivity relaxation of the mobile ions. The value of the conductivity relaxation time was observed to be lower for the PEO–AgCF3SO3 system only with nanofiller SiO2. The scaling behavior of the M″ spectra showed that the dynamical relaxation processes was temperature-independent in the PEO–AgCF3SO3 and PEO–AgCF3SO3–SiO2–PEG polymer systems, whereas they were temperature-dependent for the PEO–AgCF3SO3–SiO2 system. However, the relaxation processes of all of theses systems were found to be dependent on their respective compositions. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
19.
Radical polymerization of methyl methacrylate (MMA) in the presence of methyl -(bromomethyl) acrylate yielded poly-(MMA) bearing the 2-methoxycarbonylallyl end group through chain reaction involving bimol ecular termination. The molecular weight of the resultant polymer was effectively controlled with a small amount of the bromomethylacrylate added; the chain transfer constant was estimated to be 0.9. The poly (MMA) with the unsaturated end group (
相似文献
20.
A novel graft copolymer consisting of poly(n-octylallene-co-styrene) (PALST) as backbone and poly(?-caprolactone) (PCL) as side chains was synthesized with the combination of coordination copolymerization of n-octylallene and styrene and the ring-opening polymerization (ROP) of ?-caprolactone. Poly(n-octylallene-co-styrene) (PALST) backbone was prepared from the copolymerization of n-octylallene and styrene with high yield by using the coordination catalyst system composed of bis[N,N-(3,5-di-tert-butylsalicylidene)anilinato]titanium(IV) dichloride (Ti(Salen)2Cl2) and tri-isobutyl aluminum(Al(i-Bu)3). The molar ratio of each segment in the copolymer, and the molecular weight of the copolymer as well as the microstructure of the copolymer could be adjusted by varying the feeding ratio of both styrene and n-octylallene. The hydroxyl functionalized copolymer PALST-OH was prepared by the reaction of mercaptoethanol with the pendant double bond of PALST in the presence of radical initiator azobisisbutyronitrile (AIBN). The target graft copolymer [poly(n-octylallene-co-styrene)-g-polycaprolactone] (PALST-g-PCL) was synthesized through a grafting-from strategy via the ring-opening polymerization using PALST-OH as macroinitiator and Sn(Oct)2 as catalyst. Structures of resulting copolymer were characterized by means of gel permeation chromatography (GPC) with multi-angle laser light scattering (MALLS), 13C NMR, 1H NMR, DSC, polarized optical microscope (POM) and contact angle measurements. 相似文献
|