首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Miscibility characteristics of poly(amide):poly(vinyl pyrrolidone) (PA:PVP) blends containing a soybean-derived phytochemical called “genistein” have been investigated using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The occurrence of hydrogen bonding in the binary PA/genistein (PA/G) and PVP/genistein (PVP/G) pairs as well as their ternary blends has been confirmed by Fourier transformed infrared spectroscopy (FTIR). On the basis of DSC and POM data, the morphology phase diagram of PA:PVP/G blends is mapped out, which consisted of various coexistence regions such as isotropic, liquid + liquid, liquid + crystal, liquid + liquid + crystal, and solid crystal regions. Subsequently, PA:PVP membranes modified with genistein were prepared by coagulation via solvent (dimethyl sulfoxide, DMSO) and non-solvent (water) exchange. Addition of genistein reduced the miscibility gap of the PA/DMSO/water system. The actual amounts of genistein in the final membranes have been quantified as a function of the genistein in feed. Of particular interest is the development of the gradient cross-sectional porous channels, showing the progressively larger diameters from the surface to the bottom substrate with the progression of solvent/non-solvent exchange or solvent power. Scanning electron microscopy (SEM) investigation of the morphologies of the modified membranes revealed that genistein crystals were embedded on the membrane surface as well as in the cross-section even at a very low feed concentration of genistein. A schematic of a coagulation pathway was inscribed inside a prism phase diagram in order to comprehensively illustrate the formation of genistein modified PA:PVP membranes through the solvent/non-solvent exchange process followed by drying.  相似文献   

2.
Miscibility studies of amorphous poly(amide)/poly(vinyl pyrrolidone) (PA/PVP) blends containing a crystalline phytochemical called “mangiferin” have been carried out using differential scanning calorimetry, Fourier transformed infrared spectroscopy and polarized optical microscopy. The binary blends of PA/PVP prepared from dimethylsulfoxide solutions were found to be completely miscible showing a systematic movement of a single glass transition temperature over the entire composition range. The FTIR study indicated the occurrence of cross-hydrogen bonding interactions between PA and PVP, which may be responsible for complete miscibility of the PA/PVP pair. Moreover, cross-hydrogen bonding promotes miscibility in binary blends of PA/mangiferin and PVP/mangiferin. However, the addition of mangiferin to PA/PVP blends has resulted in liquid-liquid phase separation between PA/mangiferin and PVP/mangiferin phases due to the preferential affinity of mangiferin to PVP than to PA. With increasing mangiferin concentration, liquid-liquid phase segregations occur between PA + mangiferin and PVP + mangiferin phases in addition to the solid-liquid phase transition of mangiferin crystals. Lastly, a ternary morphology phase diagram of the PA/PVP/mangiferin blends was established, which exhibited various coexistence regions such as isotropic, liquid + liquid, liquid + crystal, liquid + liquid + crystal, and solid crystal regions.  相似文献   

3.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Poly(ethylene terephthalate) (PET)/poly(ether imide) (PEI) blends were miscible in the melt, but exhibited simultaneous liquid–liquid phase separation and crystallization over a wide range of temperature and composition. The interplay between these two processes is expected to dominate the morphological formation in the blends. In this study, the phase diagram of PET/PEI blend was determined to evaluate the envelop within which liquid–liquid phase separation was operative with crystallization. A UCST phase diagram below 240°C was identified for this system. The effect of liquid–liquid phase separation on the growth of PET spherulites was studied by small-angle light scattering (SALS). Nonlinear spherulite growths were observed for the blends at higher crystallization temperatures of 210°C and 220°C, while the growths were basically linear below 210°C. The nonlinear growth behaviour was discussed based on the competition between spherulite growth and spinodal decomposition.  相似文献   

5.
In this study, biodegradable blends of poly(ε‐caprolactone) (PCL) and poly(N‐vinylpyrrolidone) (PVP) were prepared by a new strategy in the following steps: (1) free radical polymerization of N‐vinyl‐2‐pyrrolidone (NVP) in ε‐caprolactone (CL); (2) ring‐opening polymerization of ε‐caprolactone in the presence of PVP to obtain the target blends. The structure of the blends was confirmed by FTIR and 1H NMR, and the molecular weight of PCL and PVP were determined by GPC. SEM study revealed that this polymerization method could decrease the disperse phase size and improve the interphase when compared with solution‐blending method. The phase inversion occurred when PVP content was 15–20 wt %. Subsequently, the PCL sphere dispersed in PVP matrix and its size decreased with the increase of PVP content. The contact angle results showed that PVP has a profound effect on hydrophilic properties of PCL/PVP blends. PCL/PVP blends are believed to be promising for drug delivery, cell therapy, and other biomedical applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by solution casting. The crystallization behavior and hydrophilicity of ternary blends were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and contact angle test. According to morphological analysis, the surface was full of typical spherulitic structure of PVDF and the average diameter was in the order of 3 μm. The samples presented predominantly β phase of PVDF by solution casting. It indicated that the size of surface spherulites and crystalline phase had little change with the PMMA or PVP addition. Moreover, FTIR demonstrated special interactions among the ternary polymers, which led to the shift of the carbonyl stretching absorption band of PVP. On the other hand, the melting, crystallization temperature, and crystallinity of the blends had a little change compared with the neat PVDF in the first heating process. Except for the content of PVP containing 30 wt %, the crystallinity of PVDF decreased remarkably from 64% to 33% and the value of t1/2 was not obtained. Besides, the hydrophilicity of PVDF was remarkably improved by blending with PMMA/PVP, especially when the content of PVP reached 30 wt %, the water contact angle displayed the lowest value which decreased from 98.8° to 51.0°. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Microcellular foaming of poly(phenylene sulfide)/poly(ether sulfones) (PPS/PES) blends presents a promising approach to produce high‐performance cellular materials with tailored microstructures and enhanced properties. This study investigated the effects of multiphase blend composition and process conditions on the foaming behaviors and final cellular morphology, as well as the dynamic mechanical properties of the solid and microcellular foamed PPS/PES blends. The microcellular materials were prepared via a batch‐foam processing, using the environment‐friendly supercritical CO2 (scCO2) as a blowing agent. The saturation and desorption behaviors of CO2 in PPS/PES blends for various blend ratios (10 : 0, 8 : 2, 6 : 4, 5 : 5, 4 : 6, 2 : 8, and 0 : 10) were also elaborately discussed. The experimental results indicated that the foaming behaviors of PPS/PES blends are closely related to the blend morphology, crystallinity, and the mass‐transfer rate of the CO2 in each polymer phase. The mechanisms for the foaming behaviors of PPS/PES blends have been illustrated by establishing theoretical models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42634.  相似文献   

8.
Blends containing poly(N-1-alkylitaconamic acids) (PNAIA) and poly(N-vinyl-2-pyrrolidone) (PVP) of two different weight average molecular weights, were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (FTIR). The phase behaviour of the blends is analyzed in terms of the side chain structure and the specific interactions involved, mainly due to the free carboxylic group and the amide groups in PNAIA and the carbonyl group of PVP. The strength of the interaction was analyzed in terms of the Gordon-Taylor parameters. Received: 30 July 1997/Revised version: 3 November 1997/Accepted: 20 November 1997  相似文献   

9.
The miscibility of blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(vinylpyrrolidone) (PVP) was studied by differential scanning calorimetry (DSC) through the analysis of the glass transition temperature Tg. The dependence of Tg with the annealing temperature was determined for PPO and PVP samples of different molecular weights. The phase diagrams for blends containing three different PVP samples were established. Blends of PPO and PVP were found to be miscible for composition lower than 30% and higher than 65% of PVP. A inmiscibility window between 30 and 65% of PVP is also described.  相似文献   

10.
The effects of thermally crosslinkable polymerization of monomer reactant–polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2906–2914, 2002; DOI 10.1002/app.10287  相似文献   

11.
Electron and proton conductive properties of Nafion/poly(vinylidene fluroride)-co- trifluoroethylene (PVDF-TrFE) blends were investigated in relation to domain morphology guided by phase diagram using differential scanning calorimetry, polarized optical microscopy, and AC impedance analyzers. A theoretical phase diagram was established by self-consistently solving the combined free energy density of Flory–Huggins theory for liquid-liquid demixing and the phase field theory for crystal solidification. Nafion/PVDF-TrFE blends revealed an hourglass type phase diagram, consisted of single phase crystal (Cr1), liquid + liquid (L1 + L2) and crystal + liquid (Cr1 + L2) coexistence regions. Guided by the phase diagram, the co-continuous or dispersed droplet domains were produced via phase separation induced either by solvent evaporation or thermal quenching. Fourier transformed infrared spectroscopy and water uptake measurements revealed swelling reduction in the Nafion/PVDF-TrFE blends. Accompanying the ferroelectric to paraelectric transition, the PVDF-TrFE copolymer exhibited a change of capacitor to insulator behavior with increasing temperature. Neat Nafion is poor electron conductor, but it becomes an ion conductor when hydrated. Electron/ion and proton conductivities of the 60/40 Nafion/PVDF-TrFE blend were discussed in relation to the comingled percolated morphology of the membrane.  相似文献   

12.
In this study, miscibility and tack of blends of poly (vinylpyrrolidone) (PVP)/acrylic pressure-sensitive adhesive (PSA) were evaluated. For this purpose, appropriate amounts of PVP (2–30% w/w) were added to an acrylic PSA to obtain visually homogeneous solution. The resulting solution was evenly applied on a polyethylene terephthalate (PET) film with final specific thicknesses of 10, 40, and 70 μm by using a film applicator and miscibility as well as tack values were evaluated. With the addition of 2% (w/w) PVP the tack value decreased and increased in 5% (w/w) PVP and then continuously decreased up to 30%(w/w). It was found that the tack value was related to miscibility as well as to viscosity and the free functional group such as hydroxyl group of the blend. By the morphological analysis performed through scanning electron microscopy (SEM) and also by the study of thermal analysis using the differential scanning calorimetry (DSC) behavior of blends, it was found that the two distinct phases constituted after adding 5% (w/w) of PVP. This resulted in the acrylic PSA forming the continuous phase, and by increasing the concentration of PVP a dispersed phase was developed. The dispersed phase has a higher viscosity than the continuous phase and therefore cannot wet the adherent and hence result in lowering the tack values.  相似文献   

13.
Poly(ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blends containing different amounts of PVP (0, 10, 25, 50, and 100 wt %) prepared by a solution casting method were characterized in terms of microstructure, thermal, and mechanical properties along with their drug release behavior. Fourier‐transform infrared spectroscopy results confirmed formation of hydrogen bonds between PEO and PVP. Although scanning electron microscopy micrographs showed no phase separation in the blends, the elemental analysis data obtained by energy dispersive X‐ray technique revealed partial miscibility between the blend components. The miscibility of the blend and degree of crystallinity of PEO component of the blend were decreased with increasing PVP content of the blend. The nucleating role of PVP in crystallization of PEO was confirmed by differential scanning calorimetry analysis. A synergistic effect on mechanical properties was obtained as a result of blending PVP with PEO. The results of curcumin release studies from the films indicated that, the blends have lower diffusion coefficients and slower drug release rate as compared to the neat PEO. Theoretical analysis of the drug release data using Peppas's model revealed that the kinetic of drug release from all the films is governed by a non‐Fickian diffusion mechanism. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46403.  相似文献   

14.
Poly(ethylene oxide)/poly(ε-caprolactone) (PEO/PCL) blends can be widely used in lithium rechargeable battery area or as medical materials, while the miscibility and phase diagram of the blends are still unclear. The present work attempted to establish the blends’ phase diagram using rheometry and investigated the miscibility. The results showed that a miscibility window of upper critical solution temperature character of the blends is revealed. Meanwhile, the abnormal rheological behavior of PEO at temperatures higher than 130 °C has little influence on the phase diagram determination. Different rheological properties of PEO/PCL blends from those of PEO revealed the existence of interactions between PEO and PCL molecular chains. Whereas shear-induced mixing or shear-induced phase separation might occur in phase diagram determination of PEO/PCL blends using rheometry.  相似文献   

15.
Development of polymeric blends has become very important for polymer industries because they have been shown to be successful and versatile alternatives to obtain new polymers. In this work binary blends formed by poly(vinylpyrrolidone) (PVP) and poly(ethylene oxide) (PEO) were studied by solution and solid‐state NMR to determine their physical interaction, homogeneity, and compatibility for use as membranes to separate water/alcohol. The NMR results allowed us to acquire information on the microstructure and molecular dynamic behavior of polymer blends. From the NMR solution it was possible to evaluate the microstructure: PVP presented a preferential syndiotactic distribution sequence and PEO presented two regions, one crystalline and the other amorphous. Considering the solid‐state NMR results it was possible to evaluate the molecular dynamics and all binary blends, showing that PEO behaves as a plasticizer; some intermolecular interaction was also observed. An important point was to evaluate the microstructure of the carbonyl PVP using cross polarization/magic‐angle spinning (CP/MAS) and CP/MAS/dipolar decoupling that was not observed before. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2820–2823, 2002  相似文献   

16.
Blends between poly(acrylic acid) and two different poly(oxyethylenes), (1) polyethylene glycol (PEG-1000) and (2) poly(oxyethylene) (20) sorbitan monooleate (Tween-80), were studied by differential scanning calorimetry. The glass transition temperatures, Tg, of the various compositions of these blends were found to follow Fox's equation. At room temperature, blends containing no more than 60% PEG-1000 were amorphous and exhibited only a single glass transition. For these blends with PEG-1000, the glass transition temperatures for the annealed samples were higher than for the quenched samples due to the formation of a PEG crystalline phase. It was also found that addition of an amorphous polymer such as poly(acrylic acid) significantly reduced the degree of crystallinity of a semicrystalline polymer such as poly(oxyethylene). The Tween-80 systems did not show phase separation at room temperature. The compatibility between this poly(acrylic acid) and this poly(oxyethylene) was attributed to hydrogen bonding and to the lower crystalline lattice energy of this poly(oxyethylene) through its effect on its ideal solution solubility. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The crystallization and melting behavior of poly(ether ether ketone) (PEEK) in blends with poly(aryl ether sulfone) (PES) prepared by melt mixing are investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS). The presence of PES is found to have a notable influence on the crystallization behavior of PEEK, especially when present in low concentrations in the PEEK/PES blends. The PEEK crystallization kinetics is retarded in the presence of PES from the melt and in the rubbery state. An analysis of the melt crystallization exotherm shows a slower rate of nucleation and a wider crystallite size distribution of PEEK in the presence of PES, except at low concentrations of PES, where, because of higher miscibility and the tendency of PES to form ordered structures under suitable conditions, a significantly opposite result is observed. The cold crystallization temperature of the blends at low PES concentration is higher then that of pure PEEK, whereas at a higher PES concentration little change is observed. In addition, the decrease in heat of cold crystallization and melting, which is more prevalent in PEEK‐rich compositions than in pure PEEK, shows the reduction in the degree of crystallinity because of the dilution effect of PES. Isothermal cold crystallization studies show that the cold crystallization from the amorphous glass occurs in two stages, corresponding to the mobilization of the PEEK‐rich and PES‐rich phases. The slower rate of crystallization of the PEEK‐rich phase, even in compositions where a pure PEEK phase is observed, indicates that the presence of the immobile PES‐rich phase has a constraining influence on the crystallization of the PEEK‐rich phase, possibly because of the distribution of individual PEEK chains across the two phases. The various crystallization parameters obtained from WAXS analysis show that the basic crystal structure of PEEK remains unaffected in the blend. Further, the slight melting point depression of PEEK at low concentrations of PES, apart from several other morphological reasons, may be due to some specific interactions between the component homopolymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2906–2918, 2003  相似文献   

18.
J.W. Kim 《Polymer》2005,46(15):5662-5672
The miscibility of polysulfone, PSf, blend with poly(1-vinylpyrrolidone), PVP, and that of PSf blend with poly(1-vinylpyrrolidone-co-acrylonitrile) copolymers, P(VP-AN), containing various amount of VP were explored. Even though PSf did not formed miscible blends with PVP when both components had high molecular weight, it formed miscible blend with PVP by decreasing molecular weight of PVP. PSf also formed homogeneous mixtures with P(VP-AN) containing AN from 2 to 16 wt%. These miscible blends underwent phase separation on heating caused by LCST-type (lower critical solution temperature-type) phase behavior. The phase separation temperature of miscible blends first increases with AN content, goes through a maximum centered at about 8 wt% AN. Interaction energies of binary pairs involved in blends were evaluated from the observed phase boundaries using the lattice-fluid theory. The decline of the contact angle between water and blend film by increasing P(VP-AN) content in blend indicated that the hydrophobic properties of PSf could be improved by blending with P(VP-AN) copolymers.  相似文献   

19.
The effects of spherical nanosilica particles on the lower critical solution temperature (LCST) phase diagram of poly(ε-caprolactone) (PCL)/poly(styrene-co-acrylonitrile) (SAN) blends are investigated by using isochronal dynamic temperature sweep tests at different cooling rates. A stronger dependency of the rheologically determined phase-transition points on the cooling rate is observed in the presence of nanoparticles, which results from the large contribution of entropic surface tension of chains in the Gibbs free energy of mixing and much slower rate of PCL/SAN phase dissolution. By alleviating the effects of kinetic factors, it is found that the drop in the LCST-type phase boundary of PCL/SAN blends by adding nanofiller is more apparent than real. However, the closest LCST phase diagram to the real steady-state thermodynamic diagram shows an unexpected shift to lower temperatures by adding nanosilica. The migration of nanosilica particles to the SAN domains especially at lower cooling rates in the dynamic measurements is the most likely explanation of these observations. The findings that prove the profound impact of kinetic factors in dynamic temperature measurements are reached in a hybrid system, wherein the SAN chains are preferentially absorbed on the surface of a nanofiller having very small primary particle size. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48679.  相似文献   

20.
Both as-molded and annealed poly(ether ether ketone) (PEEK)/poly(ether sulfone) (PES) blends have been prepared by direct injection molding. The system has been found to be immiscible at all compositions; however, as a result mainly of the produced morphology, it surprisingly maintains to a very great extent the excellent mechanical performance of both of the pure components. This mechanical response is compared with that of the compression molded blends. The ductility of these blends when quenched appears close to the linear between that of the two components. Leaving aside possible morphological and excess free volume of mixing effects, it is in part attributed to the nature of the blend itself. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号