首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg- and Si-doped GaN and AlGaN films were grown by metalorganic chemical vapor deposition and characterized by room-temperature photoluminescence and Hall-effect measurements. We show that the p-type carrier concentration resulting from Mg incorporation in GaN:Mg films exhibits a nonlinear dependence both on growth temperature and growth pressure. For GaN and AlGaN, n-type doping due to Si incorporation was found to be a linear function of the silane molar flow. Mg-doped GaN layers with 300K hole concentrations p ∼2×1018 cm−3 and Si-doped GaN films with electron concentrations n∼1×1019 cm−3 have been grown. N-type Al0.10Ga0.90N:Si films with resistivities as low as p ∼6.6×10−3 Ω-cm have been measured.  相似文献   

2.
A systematic study has been performed to determine the characteristics of an optimized nucleation layer for GaN growth on sapphire. The films were grown during GaN process development in a vertical close-spaced showerhead metalorganic chemical vapor deposition reactor. The relationship between growth process parameters and the resultant properties of low temperature GaN nucleation layers and high temperature epitaxial GaN films is detailed. In particular, we discuss the combined influence of nitridation conditions, V/III ratio, temperature and pressure on optimized nucleation layer formation required to achieve reproducible high mobility GaN epitaxy in this reactor geometry. Atomic force microscopy and transmission electron microscopy have been used to study improvements in grain size and orientation of initial epitaxial film growth as a function of varied nitridation and nucleation layer process parameters. Improvements in film morphology and structure are directly related to Hall transport measurements of silicon-doped GaN films. Reproducible growth of silicon-doped GaN films having mobilities of 550 cm2/Vs with electron concentrations of 3 × 1017 cm−3, and defect densities less than 108 cm−2 is reported. These represent the best reported results to date for GaN growth using a standard two-step process in this reactor geometry.  相似文献   

3.
采用条形Al掩模在Si(111)衬底上进行了GaN薄膜侧向外延的研究.结果显示,当掩模条垂直于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN无法通过侧向生长合并得到表面平整的薄膜;当掩模条平行于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN侧向外延速度较快,有利于合并得到平整的薄膜.同时,研究表明,升高温度和降低生长气压都有利于侧向生长.通过优化生长工艺,在条形Al掩模Si(111)衬底上得到了连续完整的GaN薄膜.原子力显微镜测试显示,窗口区域生长的GaN薄膜位错密度约为1×109/cm2,而侧向生长的GaN薄膜位错密度降低到了5×107/cm2以下.  相似文献   

4.
Growth pressure has a dramatic influence on the grain size, transport characteristics, optical recombination processes, and alloy composition of GaN and AlGaN films. We report on systematic studies which have been performed in a close spaced showerhead reactor and a vertical quartz tube reactor, which demonstrate increased grain size with increased growth pressure. Data suggesting the compensating nature of grain boundaries in GaN films is presented, and the impact of grain size on high mobility silicon-doped GaN and highly resistive unintentionally doped GaN films is discussed. We detail the influence of pressure on AlGaN film growth, and show how AlGaN must be grown at pressures which are lower than those used for the growth of optimized GaN films. By controlling growth pressure, we have grown high electron mobility transistor (HEMT) device structures having highly resistive (105 Ω-cm) isolation layers, room temperature sheet carrier concentrations of 1.2×1013 cm−2 and mobilities of 1500 cm2/Vs, and reduced trapping effects in fabricated devices.  相似文献   

5.
Zinc-blende GaN films were grown on GaAs (100) substrates by low-pressure metalorganic vapor phase epitaxy using trimethylgallium or triethylgallium and NH3. Films grown at lower temperatures contained considerable amounts of carbon, but the carbon concentration was reduced in high temperature growth. When the film was grown at 950°C using triethylgallium and NH3, its carbon concentration was on the order of 1017 cm−3. The crystalline and optical quality of zinc-blende GaN crystal also improved with high-temperature growth at a low V/III ratio using a thin buffer layer. The films exhibited only one sharp photoluminescence peak at 3.20 eV with a full width at half maximum as low as 70 meV at room temperature.  相似文献   

6.
The influence of diluent gas on the metalorganic vapor phase epitaxy of AlN and GaN thin films has been investigated. A computational fluid dynamics model using the finite element method was employed to improve film uniformity and to analyze transport phenomena. The properties of AlN and GaN thin films grown on α(6H)-SiC(0001) substrates in H2 and N2 diluent gas environments were evaluated. Thin films of AlN grown in H2 and N2 had root mean square (rms) roughness values of 1.5 and 1.8 nm, respectively. The surface and defect microstructures of the GaN thin films, observed by scanning and transmission electron microscopy, respectively, were very similar for both diluents. Low temperature (12K) photoluminescence measurements of GaN films grown in N2 had peak intensities and full widths at half maximum equal to or better than those films grown in H2. A room temperature Hall mobility of 275 cm2/V·s was measured on 1 μm thick, Si-doped, n-type (1×1017 cm−3) GaN films grown in N2. Acceptor-type behavior of Mg-doped GaN films deposited in N2 was repeatably obtained without post-growth annealing, in contrast to similar films grown in H2. The GaN growth rates were ∼30% higher when H2 was used as the diluent. The measured differences in the growth rates of AlN and GaN films in H2 and N2 was attributed to the different transport properties of these mixtures, and agreed well with the computer model predictions. Nitrogen is shown to be a feasible alternative diluent to hydrogen for the growth of AlN and GaN thin films.  相似文献   

7.
GaN layers have been grown by plasma-assisted molecular beam epitaxy on AlN-buffered Si(111) substrates. An initial Al coverage of the Si substrate of aproximately 3 nm lead to the best AlN layers in terms of x-ray diffraction data, with values of full-width at half-maximum down to 10 arcmin. A (2×2) surface reconstruction of the AlN layer can be observed when growing under stoichiometry conditions and for substrate temperatures up to 850°C. Atomic force microscopy reveals that an optimal roughness of 4.6 nm is obtained for AlN layers grown at 850°C. Optimization in the subsequent growth of the GaN determined that a reduced growth rate at the beginning of the growth favors the coalescence of the grains on the surface and improves the optical quality of the film. Following this procedure, an optimum x-ray full-width at half-maximum value of 8.5 arcmin for the GaN layer was obtained. Si-doped GaN layers were grown with doping concentrations up to 1.7×1019 cm−3 and mobilities approximately 100 cm2/V s. Secondary ion mass spectroscopy measurements of Be-doped GaN films indicate that Be is incorporated in the film covering more than two orders of magnitude by increasing the Be-cell temperature. Optical activation energy of Be acceptors between 90 and 100 meV was derived from photoluminescence experiments.  相似文献   

8.
Acid etching for accurate determination of dislocation density in GaN   总被引:2,自引:0,他引:2  
Hot phosphoric-acid etching and atomic force microscopy (AFM) were used to etch and characterize various GaN materials, including freestanding GaN grown by hydride vapor-phase epitaxy (HVPE), metal-organic chemical-vapor deposition (MOCVD) GaN films on sapphire and silicon carbide, and homoepitaxial GaN films on polished freestanding-GaN wafers. It was found that etching at optimal conditions can accurately reveal the dislocations in GaN; however, the optimal etch conditions were different for samples grown by different techniques. The as-grown HVPE samples were most easily etched, while the MOCVD homoepitaxial films were most difficult to etch. Etch-pit density (EPD) ranging from 4×106 cm−2 to 5×109 cm−2 was measured in close agreement with the respective dislocation density determined from transmission electron microscopy (TEM).  相似文献   

9.
We have examined the performance of gallium nitride (GaN) high-power Schottky diodes fabricated on unintentionally doped (UID) metalorganic chemical vapor deposition (MOCVD) films grown simultaneously on four substrates ranging in threading dislocation density from 5 × 103 cm - 2 to 1010 cm - 2. The substrates were an intentionally doped and a UID freestanding hydride vapor phase epitaxy substrate, an MOCVD GaN template grown on a sapphire wafer, and a bulk GaN substrate grown via an ammonothermal method. Capacitance–voltage (CV) results showed the carrier concentration was ~2 × 1016 cm?3 for films grown on each of the four substrates. With that doping level, the theoretical breakdown voltage (V b) is ~1600 V. However, measured V b for the devices tested on each of the four substrates fell short of this value. Also, the breakdown voltages across each of the four substrates were not substantially different. This result was especially surprising for films grown on bulk GaN substrates, because of their superior crystal quality, as determined from their x-ray rocking curve widths. Simple probability calculations showed that most of the diodes tested on the bulk substrate did not cover a single threading dislocation. Although optimization of edge-termination schemes is likely to improve V b, we believe that point defects, not threading dislocations, are the main reason for the reduced performance of these devices.  相似文献   

10.
Nonpolar ( ) m-plane gallium nitride has been grown heteroepitaxially on (100) γ-LiAlO2 by several groups. Previous attempts to grow m-plane GaN by hydride vapor phase epitaxy (HVPE) yielded films unsuitable for subsequent device regrowth because of the high densities of faceted voids intersecting the films’ free surfaces. We report here on the growth of planar m-plane GaN films on (100) γ-LiAlO2 and elimination of bulk and surface defects. The morphology achieved is smooth enough to allow for fabrication of m-plane GaN templates and free-standing substrates for nonpolar device regrowth. The GaN films were grown in a horizontal HVPE reactor at 860–890°C. Growth rates ranged from 30 μm/h to 240 μm/h, yielding free-standing films up to 250-μm thickness. The m-plane GaN films were optically specular and mirror-like, with undulations having 50–200-nm peak-to-valley heights over millimeter length scales. Atomic force microscopy revealed a striated surface morphology, similar to that observed in m-plane GaN films grown by molecular beam epitaxy (MBE). Root-mean-square (RMS) roughness was 0.636 nm over 25-μm2 areas. Transmission electron microscopy (TEM) was performed on the m-plane GaN films to quantify microstructural defect densities. Basal-plane stacking faults of 1×105 cm−1 were observed, while 4×109 cm−2 threading dislocations were observed in the g=0002 diffraction condition.  相似文献   

11.
Ohmic contacts with low resistance are fabricated on n-GaN films using Al/Ti bilayer metallization. GaN films used are 0.3 μm thick layers with carrier concentrations of 1 × 1019 cm−3 grown on the c-plane sapphire by ion-removed electron cyclotron resonance molecular beam epitaxy. The lowest value for the specific contact resistivity (ρc) of 1.2×10−8 Ω·cm2 was obtained with furnace annealing at 500°C for 60 min. This result shows the effectiveness of high carrier concentration GaN layers and the low temperature annealing for the realization of low resistance ohmic contacts. Sputtering Auger electron spectroscopy analysis reveals that Al diffuses into Ti layer and comes into contact with the GaN surface.  相似文献   

12.
In this paper, we report the study of the electrical characteristics of GaN and AlGaN vertical p-i-n junctions and Schottky rectifiers grown on both sapphire and SiC substrates by metal-organic chemical-vapor deposition. For GaN p-i-n rectifiers grown on SiC with a relatively thin “i” region of 2 μm, a breakdown voltage over 400 V, and forward voltage as low as 4.5 V at 100 A/cm2 are exhibited for a 60-μm-diameter device. A GaN Schottky diode with a 2-μm-thick undoped layer exhibits a blocking voltage in excess of ∼230 V at a reverse-leakage current density below 1 mA/cm2, and a forward-voltage drop of 3.5 V at a current density of 100 A/cm2. It has been found that with the same device structure and process approach, the leakage current of a device grown on a SiC substrate is much lower than a device grown on a sapphire substrate. The use of Mg ion implantation for p-guard rings as planar-edge terminations in mesageometry GaN Schottky rectifiers has also been studied.  相似文献   

13.
The present work describes the novel, relatively simple, and efficient technique of pulsed laser deposition for rapid prototyping of thin films and multi-layer heterostructures of wide band gap semiconductors and related materials. In this method, a KrF pulsed excimer laser is used for ablation of polycrystalline, stoichiometric targets of wide band gap materials. Upon laser absorption by the target surface, a strong plasm a plume is produced which then condenses onto the substrate, kept at a suitable distance from the target surface. We have optimized the processing parameters such as laser fluence, substrate temperature, background gas pressure, target to substrate distance, and pulse repetition rate for the growth of high quality crstalline thin films and heterostructures. The films have been characterized by x-ray diffraction, Rutherford backscattering and ion channeling spectrometry, high resolution transmission electron microscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy, cathodoluminescence, and electrical transport measurements. We show that high quality AlN and GaN thin films can be grown by pulsed laser deposition at relatively lower substrate temperatures (750–800°C) than those employed in metal organic chemical vapor deposition (MOCVD), (1000–1100°C), an alternative growth method. The pulsed laser deposited GaN films (∼0.5 μm thick), grown on AlN buffered sapphire (0001), shows an x-ray diffraction rocking curve full width at half maximum (FWHM) of 5–7 arc-min. The ion channeling minimum yield in the surface region for AlN and GaN is ∼3%, indicating a high degree of crystallinity. The optical band gap for AlN and GaN is found to be 6.2 and 3.4 eV, respectively. These epitaxial films are shiny, and the surface root mean square roughness is ∼5–15 nm. The electrical resistivity of the GaN films is in the range of 10−2–102 Θ-cm with a mobility in excess of 80 cm2V−1s−1 and a carrier concentration of 1017–1019 cm−3, depending upon the buffer layers and growth conditions. We have also demonstrated the application of the pulsed laser deposition technique for integration of technologically important materials with the III–V nitrides. The examples include pulsed laser deposition of ZnO/GaN heterostructures for UV-blue lasers and epitaxial growth of TiN on GaN and SiC for low resistance ohmic contact metallization. Employing the pulsed laser, we also demonstrate a dry etching process for GaN and AlN films.  相似文献   

14.
Morphological and optical studies of the Si-doped GaN films (doping level N Si = 1.5 × 1019 cm?3) grown by vapor-phase epitaxy from metalorganic compounds on a sapphire substrate oriented along the c axis are conducted. For the grown GaN films, the following characteristics are obtained: energy of electron transition E 0, absorption coefficient α, refractive index n, and frequencies of transverse and longitudinal optical lattice vibrations characteristic of the crystalline GaN films.  相似文献   

15.
N-doped p-type ZnO thin films were grown on c-sapphire substrates, semi-insulating GaN templates, and n-type ZnO substrates by metal organic chemical vapor deposition (MOCVD). Diethylzinc and oxygen were used as precursors for Zn and O, respectively, while ammonia (NH3) and nitrous oxide (N2O) were employed as the nitrogen dopant sources. X-ray diffraction (XRD) studies depicted highly oriented N-doped ZnO thin films. Photoluminescence (PL) measurements showed a main emission line around 380 nm, corresponding to an energy gap of 3.26 eV. Nitrogen concentration in the grown films was analyzed by secondary ion mass spectrometry (SIMS) and was found to be on the order of 1018 cm−3. Electrical properties of N-doped ZnO epilayers grown on semi-insulating GaN:Mg templates were measured by the Hall effect and the results indicated p-type with carrier concentration on the order of 1017 cm−3.  相似文献   

16.
Biaxial strains resulting from mismatches in thermal expansion coefficients and lattice parameters in 22 GaN films grown on A1N buffer layers previously deposited on vicinal and on-axis 6H-SiC(0001) substrates were measured via changes in the c-axis lattice parameter. A Poisson’s ratio of ν = 0.18 was calculated. The bound exciton energy (EBX) was a linear function of these strains. The shift in EBX with film stress was 23 meV/GPa. Threading dislocations densities of ~1010/cm2 and ~108/em2 were determined for GaN films grown on vicinal and on-axis SiC, respectively. A 0.9% residual compressive strain at the GaN/AIN interface was observed by high resolution transmission electron microscopy (HRTEM).  相似文献   

17.
The structural, electrical, and optical properties of GaN grown on 6H-SiC(0001) substrates by molecular beam epitaxy are studied. Suitable substrate preparation and growth conditions are found to greatly improve the structural quality of the films. Threading dislocation densities of about 3×109 cm−2 for edge dislocations and <1×106 cm−2 for screw dislocations are achieved in GaN films of 0.8 μm thickness. Mechanisms of dislocation generation and annihilation are discussed. Increasing the Ga to N flux ratio used during growth is found to improve the surface morphology. An unintentional electron concentration in the films of about 5×1017 cm−3 is observed, and is attributed to excess Si in the films due to a Si-cleaning step used in the substrate preparation. Results from optical characterization are correlated with the structural and electronic studies.  相似文献   

18.
Ion implantation into III–V nitride materials is animportant technology for high-power and high-temperature digital and monolithic microwave integrated circuits. We report the results of the electrical, optical, and surface morphology of Si ion-implanted GaN films using furnace annealing. We demonstrate high sheet-carrier densities for relatively low-dose (natoms=5×1014 cm−2) Si implants into AlN/GaN/sapphire heteroepitaxial films. The samples that were annealed at 1150°C in N2 for 5 min exhibited a smooth surface morphology and a sheet electron concentration ns ∼9.0×1013 cm−2, corresponding to an estimated 19% electrical activation and a 38% Si donor activation in GaN films grown on sapphire substrates. Variable-temperature Hall-effect measurem entsindicate a Si donor ionization energy ∼15 meV.  相似文献   

19.
Transmission electron microscopy was used to study the microstructure of GaN films undoped or Si-doped to 1017 or 1018 cm?3 and grown by molecular-beam epitaxy on (0001) Al2O3 substrate without nitridation or a buffer layer. Defect structures including inversion domains, nanopipes, and (0001) stacking faults were studied. The influence of Si doping on the threading dislocation density and the dimensions of GaN grains bounded by inversion domains was assessed. Smoothing of the steplike morphology of the GaN film surface occurs at a Si concentration of 1017 cm?3.  相似文献   

20.
Oxygen doped GaN has been grown by metalorganic chemical vapor deposition using N2O as oxygen dopant source. The layers were deposited on 2″ sapphire substrates from trimethylgallium and especially dried ammonia using nitrogen (N2) as carrier gas. Prior to the growth of the films, an AIN nucleation layer with a thickness of about 300? was grown using trimethylaluminum. The films were deposited at 1085°C at a growth rate of 1.0 μm/h and showed a specular, mirrorlike surface. Not intentionally doped layers have high resistivity (>20 kW/square). The gas phase concentration of the N2O was varied between 25 and 400 ppm with respect to the total gas volume. The doped layers were n-type with carrier concentrations in the range of 4×1016 cm−3 to 4×1018 cm−3 as measured by Hall effect. The observed carrier concentration increased with increasing N2O concentration. Low temperature photoluminescence experiments performed on the doped layers revealed besides free A and B exciton emission an exciton bound to a shallow donor. With increasing N2O concentration in the gas phase, the intensity of the donor bound exciton increased relative to that of the free excitons. These observations indicate that oxygen behaves as a shallow donor in GaN. This interpretation is supported by covalent radius and electronegativity arguments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号