首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Alexandre  Thomas   《Performance Evaluation》2009,66(11):607-620
In many real-life computer and networking applications, the distributions of service times, or times between arrivals of requests, or both, can deviate significantly from the memoryless negative exponential distribution that underpins the product-form solution for queueing networks. Frequently, the coefficient of variation of the distributions encountered is well in excess of one, which would be its value for the exponential. For closed queueing networks with non-exponential servers there is no known general exact solution, and most, if not all, approximation methods attempt to account for the general service time distributions through their first two moments.We consider two simple closed queueing networks which we solve exactly using semi-numerical methods. These networks depart from the structure leading to a product-form solution only to the extent that the service time at a single node is non-exponential. We show that not only the coefficients of variation but also higher-order distributional properties can have an important effect on such customary steady-state performance measures as the mean number of customers at a resource or the resource utilization level in a closed network.Additionally, we examine the state that a request finds upon its arrival at a server, which is directly tied to the resulting quality of service. Although the well-known Arrival Theorem holds exactly only for product-form networks of queues, some approximation methods assume that it can be applied to a reasonable degree also in other closed queueing networks. We investigate the validity of this assumption in the two closed queueing models considered. Our results show that, even in the case when there is a single non-exponential server in the network, the state found upon arrival may be highly sensitive to higher-order properties of the service time distribution, beyond its mean and coefficient of variation.This dependence of mean numbers of customers at a server on higher-order distributional properties is in stark contrast with the situation in the familiar open M/G/1 queue. Thus, our results put into question virtually all traditional approximate solutions, which concentrate on the first two moments of service time distributions.  相似文献   

2.
Analytic queueing network models are being used to analyze various optimization problems such as server allocation, design and capacity issues, optimal routing, and workload allocation. The mathematical properties of the relevant performance measures, such as throughput, are important for optimization purposes and for insight into system performance.We show that for closed queueing networks of m arbitrarily connected single server queues with n customers, throughput, as a function of a scaled, constrained workload, is not concave. In fact, the function appears to be strictly quasiconcave. There is a constraint on the total workload that must be allocated among the servers in the network. However, for closed networks of two single server queues, we prove that our scaled throughput is concave when there are two customers in the network and strictly quasi-concave when there are more than two customers. The mathematical properties of both the scaled throughput and reciprocal throughput are demonstrated graphically for closed networks of two and three single server queues.  相似文献   

3.
本文在可修M/M/1/N排队系统中引入了启动时间、工作休假和工作故障策略.在该系统中,服务台在休假期间不是完全停止工作,而是处于低速服务状态.设定服务台在任何时候均可发生故障,当故障发生时立刻进行维修.且当服务台在正规忙期出现故障时,服务台仍以较低的服务速率为顾客服务.服务台的寿命时间和修理时间均服从指数分布,且在不同的时期有不同的取值.同时,从关闭期到正规忙期有服从指数分布的启动时间.本文建立此模型的有限状态拟生灭过程(QBD),使用矩阵几何方法得到系统的稳态概率向量,并应用基本阵和协方差矩阵理论,计算出系统稳态可用度、系统方差、系统吞吐率、系统稳态队长及各系统稳态概率等系统性能指标.同时,通过数值实验对各系统参数对系统性能的影响进行了初探.文中的敏感性分析体现了这种方法的有效性和可用性.实验表明,文中提出的模型,可有效改善仅带有工作休假或工作故障策略排队模型的系统性能.  相似文献   

4.
Summary Open, closed and mixed queueing networks with reversible routing, multiple job classes and rejection blocking are investigated. In rejection blocking networks blocking event occurs when upon completion of its service of a particular station's server, a job attempts to proceed to its next station. If, at that moment, its destination station is full, the job is rejected. The job goes back to the server of the source station and immediately receives a new service. This is repeated until the next station releases a job and a place becomes available. In the model jobs may change their class membership and general service time distributions depending on the job class are allowed. Two station types are considered: Either the scheduling discipline is symmetric, in which case the service time distributions are allowed to be general and dependent on the job class or the service time distributions at a station are all identical exponential distributions, in which case more general scheduling disciplines are allowed. An exact product form solution for equilibrium state probabilities is presented. Using the exact product form solution of the equilibrium state distribution, algorithms for computation of performance measures, such as mean number of jobs and throughputs, are derived. The complexity of the algorithms is discussed.  相似文献   

5.
Two major approximate techniques have been proposed for the analysis of general closed queueing networks, namely the aggregation method and Marie's method. The idea of the aggregation technique is to replace a subsystem (a subnetwork) by a flow equivalent single-server with load-dependent service rates. The parameters of the equivalent server are obtained by analyzing the subsystem in isolation as a closed system with different populations. The idea of Marie's method is also to replace a subsystem by an equivalent exponential service station with load-dependent service rates. However, in this case, the parameters of the equivalent server are obtained by analyzing the subsystem in isolation under a load-dependent Poisson arrival process. Moreover, in Marie's case, the procedure is iterative.

In this paper we provide a general and unified view of these two methods. The contributions of this paper are the following. We first show that their common principle is to partition the network into a set of subsystems and then to define an equivalent product-form network. To each subsystem is associated a load-dependent exponential station in the equivalent network. We define a set of rules in order to partition any general closed network with various features such as general service time distributions, pupulation constraints, finite buffers, state-dependent routing. We then show that the aggregation method and Marie's method are two ways of obtaining the parameters of the equivalent network associated with a given partition. Finally, we provide a discussion pertaining to the comparison of the two methods with respect to their accuracy and computational complexity.  相似文献   


6.
This paper is concerned with reliable multistation series queueing networks. Items arrive at the first station according to a Poisson distribution and an operation is performed on each item by a server at each station. Every station is allowed to have more than one server with the same characteristics. The processing times at each station are exponentially distributed. Buffers of nonidentical finite capacities are allowed between successive stations. The structure of the transition matrices of these specific type of queueing networks is examined and a recursive algorithm is developed for generating them. The transition matrices are block-structured and very sparse. By applying the proposed algorithm the transition matrix of a K-station network can be created for any K. This process allows one to obtain the exact solution of the large sparse linear system by the use of the Gauss–Seidel method. From the solution of the linear system the throughput and other performance measures can be calculated.Scope and purposeThe exact analysis of queueing networks with multiple servers at each workstation and finite capacities of the intermediate queues is extremely difficult as for even the case of exponential operation (service or processing) times the Markovian chain that models the system consists of a huge number of states which grows exponentially with the number of stations, the number of servers at each station and the queue capacity of each intermediate queue of the resulting system. The scope and purpose of the present paper is to analyze and provide a recursive algorithm for generating the transition matrices of multistation multiserver exponential reliable queueing networks. By applying the proposed algorithm one may create the transition matrix of a K-station queueing network for any K. This process allows one to obtain the exact solution of the resulting large sparse linear system by the use of the Gauss–Seidel method. From the solution of the linear system the throughput and other performance measures of the system can be obtained.  相似文献   

7.
Operational analysis replaces certain classical queueing theory assumptions with the conditions of "homogeneous service times" and "on-line= off-line behavior." In this paper we explore the relationship between the operational and classical concepts for the sample paths of an M/G/1 queueing system. The primary results are that the sample paths can have these operational properties with nonzero probability if and only if the service time is exponential. We also state dual results for interarrival times in G/M/l. Additionally, we show that open, feedforward networks of single server queues can have product form solutions valid across a range of system arrival rates if and only if all of the service times are exponential. Finally, we consider the relationship between the operational quantities S(n) and the mean service time in M/G/1. This relationship is shown to depend on the form of the service time distribution. It follows that using operational analysis to predict the performance of an M/G/1 queueing system will be most successful when the service time is exponential. Simulation evidence is presented which supports this claim.  相似文献   

8.
Mean value analysis (MVA) is an efficient algorithm for determining the mean sojourn time, the mean queue length, and the throughput in a closed multiclass queueing network. It provides exact results for the class of product-form networks. Often different classes have different service requirements in FCFS queues, but such networks are not of product form. There are several possibilities to compute performance measure for such nodes and networks. In this paper we present an approximation formula for multiple-server FCFS queues with class-dependent service times as a Norton flow equivalent product node, where the departure rate of any class depends on the number of customers of all classes in the queue. We will use this approximation in the sojourn time formula of some exact and approximate MVA algorithms.  相似文献   

9.
The problem considered is that of optimally controlling a queueing system which consists of a common buffer or queue served by two servers. The arrivals to the buffer are Poisson and the servers are both exponential, but with different mean service times. It is shown that the optimal policy which minimizes the mean sojourn time of customers in the system is of threshold type. The faster server should be fed a customer from the buffer whenever it becomes available for service, but the slower server should be utilized if and only if the queue length exceeds a readily computed threshold value.  相似文献   

10.
非乘积解随机Petri网的乘积形式近似求解   总被引:3,自引:0,他引:3  
讨论了非乘积解随机Petri网的近似求解问题。将Marie方法引入到随机Petri网的近似分析中,利用随机Petri网中已有的结论将该方法中的分解原则推广到更一般的情形,使其应用范围更广,利用运算分析法对这些分解原则作了形式化描述,在此基础上,给出了有关结论的数学证明。最后,对这种近似方法作了误差分析,找出了产生误差的原因。实验数据表明本文所给的近似方法应用广且有效。  相似文献   

11.
An approximation is introduced for the mean value analysis of queueing networks with transfer blocking. The blocking occurs when a job, after completing service at a station, wants to join a station which is full. The job resides in the server of the source station until a place becomes available in the destination station. The approximation is based on the modification of mean residence times, due to the blocking events that occur in the network. Several examples are executed that validate the approximate results.<>  相似文献   

12.
Summary The principle of Minimum Relative Entropy (MRE), given fully decomposable subset and aggregate mean queue length, utilisation and flow-balance constraints, is used in conjunction with asymptotic connections to infinite capacity queues, to derive new analytic approximations for the conditional and marginal state probabilities of single class general closed queueing network models (QNMs) in the context of a multilevel variable aggregation scheme. The concept of subparallelism is applied to preserve the flow conservation and a universal MRE hierarchical decomposition algorithm is proposed for the approximate analysis of arbitrary closed queueing networks with single server queues and general service-times. Heuristic criteria towards an optimal coupling of network's units at each level of aggregation are suggested. As an illustration, the MRE algorithm is implemented iteratively by using the Generalised Exponential (GE) distributional model to approximate the service and asymptotic flow processes in the network. This algorithm captures the exact solution of separable queueing networks, while for general queueing networks it compares favourably against exact solutions and known approximations.This work is sponsored by the Science and Engineering Research Council (SERC), UK, under grant GR/F29271  相似文献   

13.
分析带有启动时间、服务台可故障的M/M/1/N单重工作休假排队系统.在该系统中,服务台在休假期间不是完全停止工作,而是处于低速服务状态.假定服务台允许出现故障且当出现故障时,服务台停止为顾客服务且立即进行修理.服务台的失效时间和修理时间均服从指数分布,且工作休假期和正规忙期具有不同的取值;同时,从关闭期到正规忙期有服从指数分布的启动时间.建立此工作休假排队系统的有限状态拟生灭过程(QBD),使用矩阵几何方法得到QBD的各稳态概率相互依赖的率阵,从而求得稳态概率向量.通过有限状态QBD的最小生成元和稳态概率向量得到系统的基本阵和协方差矩阵,求解出系统方差、系统稳态可用度、系统吞吐率、系统稳态队长、系统稳态故障频度等系统性能.数值分析体现了所提出方法的有效性和实用性,通过敏感性分析将各参数对系统性能的影响进行了初探,为此模型的实际应用提供了很好的理论依据.  相似文献   

14.
A dynamic control policy known as "threshold queueing" is defined for scheduling customers from a Poisson source on a set of two exponential servers with dissimilar service rates. The slower server is invoked in response to instantaneous system loading as measured by the length of the queue of waiting customers. In a threshold queueing policy, a specific queue length is identified as a "threshold," beyond which the slower server is invoked. The slower server remains busy until it completes service on a customer and the queue length is less than its invocation threshold. Markov chain analysis is employed to analyze the performance of the threshold queueing policy and to develop optimality criteria. It is shown that probabilistic control is sub-optimal to minimize the mean number of customers in the system. An approximation to the optimum policy is analyzed which is computationally simple and suffices for most operational applications.  相似文献   

15.
A two station tandem queueing system with given numbers of customers initially at each station and no arrivals is considered. There is a fixed server at each station, but also an additional server that can be dynamically allocated to wherever its use will do most good. There are differing linear holding costs at each station, and the aim is to use the extra server to minimize the expected total holding cost incurred until the system empties. It is shown that if either the extra server can be switched between the two stations at any time, or if it is restricted in use to just one station, where it can be turned on or off, then the optimal use of the server is such that after a service completion at one station, the effort devoted there never increases, and the effort devoted to the other station never decreases  相似文献   

16.
Consider a closed queueing network (CQN) with a set of stations; the service rate at each station can be any function of the queue length at that station. Upper and lower bounds are developed for the throughput of the CQN. The bounds make use of some results recently developed by the authors on likelihood ratio ordering and its preservation under convolution. As a special case, bounds for the throughput of CQN with multi-server stations are also considered.  相似文献   

17.
This paper deals with an M/G/1 retrial queue with negative customers and non-exhaustive random vacations subject to the server breakdowns and repairs. Arrivals of both positive customers and negative customers are two independent Poisson processes. A breakdown at the busy server is represented by the arrival of a negative customer which causes the customer being in service to be lost. The server takes a vacation of random length after an exponential time when the server is up. We develop a new method to discuss the stable condition by finding absorb distribution and using the stable condition of a classical M/G/1 queue. By applying the supplementary variable method, we obtain the steady-state solutions for both queueing measures and reliability quantities. Moreover, we investigate the stochastic decomposition law. We also analyse the busy period of the system. Some special cases of interest are discussed and some known results have been derived. Finally, an application to cellular mobile networks is provided and the effects of various parameters on the system performance are analysed numerically.  相似文献   

18.
A useful model for buffer capacity design in communication systems is the single server queueing model with restricted accessibility where arriving customers are admitted only if their waiting plus service times do not exceed some fixed amount. A two-moment approximation for the buffer capacity in order to achieve a specific rejection probability is proposed for the case of Poisson arrivals and general service requirements. This approximation is a weighted combination of exact results for the special cases of deterministic and exponential service requirements where the weights use only the coefficient of variation of the general service requirement. Numerical experiments show an excellent performance of the approximation.  相似文献   

19.
An M/M(a, b)/1 queueing system with multiple vacations is studied, in which if the number of customers in the queue is a - 1 either at a service completion epoch or at a vacation completion point, the server will wait for an exponential time in the system which is called the changeover time. During this changeover time if there is an arrival the server will start service immediately, otherwise at the end of the changeover time the server will go for a vacation. The duration of vacation is also exponential. This paper is concerned with the determination of the stationary distribution of the number of customers in the queue and the waiting time distribution of an arriving customer. The expected queue length is also obtained. Sample numerical illustrations are given.  相似文献   

20.
We consider a queueing system with a general service distribution having a possibility of feedback. The customers belong to the same class, and the queueing discipline is first-in, first-out. There is only one server in the station. The facility is rendered Markovian by means of fictitious stages. The input flow depends on the state of the station. It is shown that the equilibrium probabilities can be simply expressed by means of a matrix product. Two particular cases are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号