首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bi_2O_3含量对NiCuZn旋磁铁氧体基板材料性能的影响   总被引:1,自引:1,他引:0  
采用氧化物法制备了NiCuZn铁氧体材料,研究了Bi2O3掺杂对其旋磁性能的影响。结果表明,在1~4wt%的范围内,随着Bi2O3含量的提高,铁磁共振线宽△H和介电损耗角正切tgδε都呈现出先减小后上升的趋势;并且在掺杂量为3wt%、烧结温度为900℃时,△H15kA/m、tgδε=6.5×10-4、Ms300kA/m,可用于低温共烧旋磁铁氧体基板的制备。  相似文献   

2.
采用溶胶-凝胶(Sol-gel)法制备Ni0.2Cu0.2Zn0.6Fe2O4铁氧体材料。基于低温共烧铁氧体(LTCF)技术的要求,研究了掺杂Bi2O3对NiCuZn铁氧体材料的微结构和电磁性能的影响。结果表明,采用溶胶-凝胶法制备的NiCuZn材料,通过掺杂Bi2O3助烧剂,880℃低温烧结4h,已经生成所要的尖晶石相铁氧体;SEM显示随着Bi2O3的加入,NiCuZn铁氧体晶粒逐渐变大,生长均匀。在磁性能方面,添加3wt%Bi2O3时饱和磁化强度达到了77.03 A·m2/kg。Bi2O3在促进NiCuZn铁氧体烧结的同时,增大了材料的磁导率。  相似文献   

3.
用固相法合成富锂材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2,通过包覆磷酸铋(Bi PO4)对材料进行表面改性,以提高循环稳定性。XRD、SEM及TEM测试结果表明,包覆材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2/Bi PO4的结构与Li[Li0.2Mn0.54Ni0.13Co0.13]O2相比没有发生变化,Bi PO4均匀地包覆在材料表面,包覆层厚度约为10 nm。在2.0~4.8 V充放电,当电流为0.1 C时,制备的Li[Li0.2Mn0.54Ni0.13Co0.13]O2/Bi PO4的首次库仑效率从Li[Li0.2Mn0.54Ni0.13Co0.13]O2的75%提高到83%,以0.2 C循环100次,放电比容量保持在249 m Ah/g。  相似文献   

4.
将层状的LiNi1/3Co1/3Mn1/3O2锂离子电池正极材料与尖晶石型的LiMn2O4按质量比为2∶98混合烧结,采用X射线衍射(XRD)、循环伏安法(CV)、交流阻抗(EIS)以及充放电测试研究LiMn2O4对LiNi1/3Co1/3Mn1/3O2电化学性能的影响。研究表明混合LiMn2O4有利于提高LiNi1/3Co1/3Mn1/3O2正极材料的首次库仑效率、循环性能和倍率性能,在3.0~4.3 V以1 C循环,首次放电比容量和库仑效率分别为150.3 m Ah/g和85.5%,循环50次后容量保持率为88.9%;在5 C下充放电仍保持136.2 m Ah/g。循环伏安与交流阻抗测试表明混合2%(质量分数)LiMn2O4可以提升材料的可逆性和放电容量,降低电荷转移电阻。  相似文献   

5.
采用传统的高温固相合成方法制备了添加Bi2O3的锶铁氧体粘结磁粉,研究了不同焙烧温度和时间下Bi2O3对锶铁氧体相组成、微结构以及内禀矫顽力的影响。结果表明,添加1wt%Bi2O3的试样中,由于含Bi液相的生成,在1050℃的较低温度下促进了铁氧体化反应和晶粒生长,从而显著提高SrM的内禀矫顽力。在添加1wt%Bi2O3的情况下,获得的锶铁氧体颗粒尺寸在1.2μm附近,球形度较佳,同时具有超过300kA/m的内禀矫顽力,可应用于制备高填充型粘结铁氧体磁体。  相似文献   

6.
《电池》2015,(3)
采用湿法球磨工艺和热处理制备三氧化二铬(Cr2O3)修饰钛酸锂(Li4Ti5O12)材料。Cr2O3修饰后,Li4Ti5O12的XRD图中没有出现杂质峰。Cr2O3修饰可提高Li4Ti5O12在高倍率下的容量保持率和循环性能。Li4Ti5O12-1.5%Cr2O3材料的倍率性能和循环性能最好,以5.0 C在1.0~2.5 V充放电,第500次循环的放电比容量为122.8 m Ah/g,容量保持率为96.2%;纯相Li4Ti5O12分别为48.3 m Ah/g、81.1%。Cr2O3修饰降低了Li4Ti5O12的电荷转移阻抗,提高了材料的电化学活性。  相似文献   

7.
采用传统陶瓷工艺制备了BaCoTiFe10O19铁氧体,结合相结构、显微形貌分析和对材料磁化机理的讨论,主要研究了Bi2O3加入量和烧结温度对钡铁氧体高频磁性的影响.实验表明,起始磁导率和共振频率随Bi2O3加入量的变化存在极值,当Bi2O3的加入量为7.5mol%时钡铁氧体具有较高的磁导率和较低的磁共振频率,偏离7.5mol%均导致磁导率的降低和磁共振频率的升高;高烧结温度导致晶粒尺寸的长大和晶格结构的完善,有利于提高材料的磁导率,同时降低磁共振频率.  相似文献   

8.
研究了电动工具、电池车等对安全性和成本要求较高的应用领域所需要的改性尖晶石型LiMn2O4电池正极材料。首先研究了LiMn2O4与LiF混合物的热处理反应过程,采用LiF对预先合成的LiMn2O4进行后处理,并研究了处理温度对材料的比表面积和高温循环性能的影响。结果表明,LiF/LiMn2O4混合体系在500℃以上开始反应,所形成材料的特性发生了明显的变化;热处理温度越高,形成的材料比表面积大幅度减小,由处理前的2.0m2/g减小为1.1m2/g;600℃条件下处理材料的首次比容量为118.1mAh/g,但是循环30次的容量保持率仍然可以达到89%。  相似文献   

9.
研究了退火工艺对溶胶-凝胶法Bi4Ti3O12_Bi3TiNbO9复合薄膜铁电性能的影响。结果表明,采用溶胶-凝胶工艺制备Bi4Ti3O12_Bi3TiNbO9复合薄膜,可将薄膜的剩余极化值Pr提高到19.8μC/cm2(而Bi4Ti3O12薄膜的Pr只有15μC/cm2);薄膜在650℃退火可获得最佳的铁电性能。  相似文献   

10.
以Li Ac·2H2O、Mn(Ac)2·4H2O、Ni(Ac)2·4H2O和Cr(NO3)3·9H2O为原料,柠檬酸为络合剂,用溶胶-凝胶法合成Li1.016Cr0.103Mn0.464Ni0.356O2。通过XRD、SEM、电感耦合等离子体(ICP)发射光谱和电化学性能测试,考察反应温度的影响。材料具有典型的富锂层状固溶体型的晶体结构特征,最佳反应温度为85℃,合成的材料颗粒尺寸均一,约为150 nm。材料在2.0~4.8 V循环,0.1 C(25 m A/g)首次放电比容量为190 m Ah/g;经0.1 C、0.2 C、0.5 C和1.0 C循环20次后,容量保持率分别为86%、88%、90%和88%,且1.0 C最大放电比容量仍保持在95 m Ah/g。  相似文献   

11.
以LiNO3、Ni(NO3)2.6H2O、Mn(NO3)2、Al(NO3)3.9H2O及尿素为原料,用低温燃烧法合成了LiNi0.5Mn0.45Al0.05O2。通过正交实验对合成条件进行了优化,最佳条件为:在600℃点火使原料发生自蔓延燃烧反应,将燃烧产物在750℃回火处理12 h,原料中锂过量10%。XRD、SEM及充放电测试结果表明:此条件下所得产物具有-αNaFeO2型层状结构、球状形貌,以0.1C在2.5~4.6 V充放电,放电比容量在第2次循环时最高,为183.85 mAh/g,第50次循环时仍有167.27 mAh/g。  相似文献   

12.
采用共沉淀法制备了锂离子电池正极材料LiNixMn2-xO4(x=0.1,0.2,0.3,0.4,0.5,0.6)。XRD测试结果表明,除LiNi0.6Mn1.4O4外,其他的试样均为尖晶石结构。电化学性能测试表明:试样在4.0 V左右平台的容量随掺镍量的增加而减小,在4.7 V左右平台的容量随掺镍量的增加而增加,但总容量变化不大。试样的循环性能随掺镍量的增加而提高。  相似文献   

13.
孙玉城  张婷  鞠孜锐 《电源技术》2011,35(2):165-169
通过氢氧化物共沉淀制备前驱体的方法合成了一系列具有层状结构的锂离子电池正极材料LiMnxCo0.2Ni0.8-xO2。采用XRD、XPS和恒流充放电等测试手段研究了Mn含量变化对正极材料LiMnxCo0.2Ni0.8-xO2的物理性质与电化学性能的影响。研究结果表明,Mn含量的增加会引起元素O和Ni的氧化态降低,使得Ni由+3逐渐转变为+2,而Mn的氧化态却始终保持+4不变。尽管Mn含量的增加会使材料的充放电比容量有所降低,但是材料的结构稳定性和热稳定性会得到改善。XRD测试结果表明样品LiMnxCo0.2Ni0.8-xO2(0≤x≤0.5)都具有标准的a-NaFeO2层状结构(空间群:R3m,166)。此外,从Mn含量的变化引起的样品晶胞参数的变化表明,当0≤x≤0.25时LiMnxCo0.2Ni0.8-xO2可能形成的是假固溶体,当Mn含量由0.3增加到0.5时形成的是真固溶体。  相似文献   

14.
层状的LiNi0.5Mn0.5O2合成及其电化学性能   总被引:1,自引:1,他引:0  
采用超声波辅助溶胶-凝胶法合成层状的锂离子电池的正极材料LiNi0.5Mn0.5O2,并用热重分析、X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构与形貌进行了研究,电化学性能采用循环伏安法(CV)、交流阻抗和充放电测试进行表征.结果表明,在950℃灼烧12 h的材料结晶度比较好,其晶胞参数a=0,287 9 nm,c=1.431 nm,结构比较理想.当材料在2.8~4.2 V间进行充放电时,其首次放电容量为170 mAh/g,50次循环后容量的保持率为89%.  相似文献   

15.
报告了共沉淀法合成LiCoxNi(1-x)O2的工艺及其电化学性能。结果表明:在一定的工艺条件下,合成的LiCoxNi(1-x)O2(x=0.1,0.2,0.3)有较高的容量和较好的循环寿命。  相似文献   

16.
采用标准陶瓷工艺 ,并进行湿压磁场成型和氧气氛烧结 ,制备了高取向度、低介电损耗的各向异性 Ba(Zn Ti) x Fe12 - 2 x O19多晶六角铁氧体。根据分析 ,我们认为 M型六角钡铁氧体的六面体位 2 b位是一个特殊的四面体位 ,Zn2 +取代了 4f1和 2 b位上的 Fe3+,而 Ti4 +取代了1 2 k和 2 a位上的 Fe3+。  相似文献   

17.
微波烧结工艺制备LiNi_(0.5)Mn_(0.5)O_2正极材料   总被引:2,自引:0,他引:2  
以乙酸镍、乙酸锰、乙酸锂和柠檬酸为原料,用溶胶.凝胶法制得前驱体,再用微波烧结工艺制备Li Ni0.5 Mn0.5O2正极材料.用ICP-AES、IR和TG-DSC等方法测试前驱体,用XRD、SEM、TEM和SAED等方法分析样品.溶液DH=8、总金属离子浓度为1.333 mol/L时得到的前驱体,在400 ℃下预烧4 h,再以3 kW加热10 min、800 W保持10 min,可制备出高结晶度的层状Li Ni0.5 Mn0.5O2,0.1 C首次充放电效率为96.3%.  相似文献   

18.
采用质量比为50∶50的钴酸锂和镍钴铝锂制成混合正极材料,并对其充放电曲线特征和耐过充电性能进行了研究。结果表明:与单一钴酸锂材料相比,混合材料中的镍钴铝锂在充放电过程中先主要被充电,而放电过程中,钴酸锂先主要被放电;当电池过充电4.8 V后,混合材料表现出较优异的耐过充性能。  相似文献   

19.
用溶胶-凝胶法合成尖晶石LiCoxMn2-xO4(x=0.1、0.2、0.3和0.4)。随着Co掺杂量x的提高,样品的首次比容量降低,循环性能提高。LiCo0.1Mn1.9O4的电化学阻抗谱(EIS)高频区域拉长压扁的半圆由两个半圆重叠而成,分别归属于Li+通过SEI膜的迁移和LiMn2O4的电子电导率。在首次充放电过程中,3.95~3.70 V时SEI膜的阻抗增大,可能是Li+嵌入时颗粒膨胀导致晶体畸变所致;随着电极电位升高,电子传输电阻Re总体减小,电荷传递电阻Rct先减小,后增大。  相似文献   

20.
采用共沉淀-喷雾造粒法制备前驱体,于700℃在空气中煅烧20h合成出层状LiNi0.5-xCo2xMn0.5-xO2正极材料,研究了不同掺钴量对材料的结构和电化学性能的影响,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电性能测试考察了所得材料的结构、形貌与电化学性能。XRD分析表明,LiNi0.5-xCo2xMn0.5-xO2具有α-NaFeO2层状结构,Co3+的掺入可促进层状结构的生成,有效减少阳离子混排。电性能测试结果显示,LiNi0.5-xCo2xMn0.5-xO2随着掺钴量的增大,放电容量提高,循环性能变好。样品LiNi0.35Co0.3Mn0.35O2表现出最好的电化学性能,其首次放电效率充放电效率达90%,首次放电比容量为172.8mAh/g,40次循环容量无明显衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号