首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-combustion based renewable electricity generation technologies were assessed against a range of sustainability indicators and using data obtained from the literature. The indicators used to assess each technology were price of generated electricity, greenhouse gas emissions during full life cycle of the technology, availability of renewable sources, efficiency of energy conversion, land requirements, water consumption and social impacts. The cost of electricity, greenhouse gas emissions and the efficiency of electricity generation were found to have a very wide range for each technology, mainly due to variations in technological options as well as geographical dependence of each renewable energy source. The social impacts were assessed qualitatively based on the major individual impacts discussed in literature. Renewable energy technologies were then ranked against each indicator assuming that indicators have equal importance for sustainable development. It was found that wind power is the most sustainable, followed by hydropower, photovoltaic and then geothermal. Wind power was identified with the lowest relative greenhouse gas emissions, the least water consumption demands and with the most favourable social impacts comparing to other technologies, but requires larger land and has high relative capital costs.  相似文献   

2.
To achieve a national energy access target of 90% urban and 51% rural by 2035, combat climate change, and diversify the energy sector in the country, the Zambian government is planning to integrate other renewable energy resources (RESs) such as wind, solar, biomass, and geothermal into the existing hydro generation–based power system. However, to achieve such targets, it is essential for the government to identify suitable combination of the RESs (electricity generation fuel mix) that can provide the greatest sustainability benefit to the country. In this paper, a multicriteria decision-making framework based on analytic hierarchy process and system dynamics techniques is proposed to evaluate and identify the best electricity generation fuel mix for Zambia. The renewable energy generation technologies considered include wind, solar photovoltaic, biomass, and hydropower. The criteria used are categorized as technical, economic, environmental, social, and political. The proposed approach was applied to rank the electricity generation fuel mix based on nine sustainability aspects: land use, CO2 emissions, job creation, policy promotion affordability, subsidy cost, air pollution reduction, RES electricity production, RES cumulative capacity, and RES initial capital cost. The results indicate that based on availability of RESs and sustainability aspects, in overall, the best future electricity generation mix option for Zambia is scenario with higher hydropower (40%) penetration, wind (30%), solar (20%), and lower biomass (10%) penetration in the overall electricity generation fuel mix, which is mainly due to environmental issues and availability of primary energy resources. The results further indicate that solar ranks first in most of the scenarios even after the penetration weights of RES are adjusted in the sensitivity analysis. The wind was ranked second in most of the scenarios followed by hydropower and last was biomass. These developed electricity generation fuel mix pathways would enable the country meeting the future electricity generation needs target at minimized environmental and social impacts by 2035. Therefore, this study is essential to assist in policy and decision making including planning at strategic level for sustainable energy diversification.  相似文献   

3.
Before commissioning any energy projects, conducting robust assessments of different options in terms of their economic and socio-environmental impacts is important for successful project implementation. Yet, there is currently a lack of tools that simultaneously assess sustainability impacts; instead, they are often investigated separately, which gives decision makers somehow disintegrated information. Thus the main objective of this study is to examine how to incorporate socio-environmental considerations into project assessment models. The multi-criteria analysis is applied to the case study of Sri Lankan hydropower projects as an illustrative example. The estimated quantitative relationship between economic, environmental and social impacts of hydropower development is presented in this study. Such estimation, using sustainability indicators of hydropower projects, enables us to understand marginal trade-offs among economic, environmental and social objectives of hydropower development. Hence, this would provide an overview of potential impacts of different scenarios that are designed to be implemented and indicate an optimum mix of hydropower generation.  相似文献   

4.
Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance “inefficient” in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost.  相似文献   

5.
Use of bioenergy as a renewable resource is increasing in many parts of the world and can generate significant environmental, economic and social benefits if managed with due regard to sustainability constraints. This work reviews the environmental, social and economic constraints on key feedstocks for UK heat, power and transport fuel. Key sustainability constraints include greenhouse gas savings achieved for different fuels, land availability, air quality impacts and facility siting. Applying those constraints, we estimate that existing technologies would facilitate a sustainability constrained level of medium-term bioenergy/biofuel supply to the UK of 4.9% of total energy demand, broken down into 4.3% of heat demands, 4.3% of electricity, and 5.8% of transport fuel. This suggests that attempts to increase the supply above these levels could have counterproductive sustainability impacts in the absence of compensating technology developments or identification of additional resources. The barriers that currently prevent this level of supply being achieved have been analysed and classified. This suggests that the biggest policy impacts would be in stimulating the market for heat demand in rural areas, supporting feedstock prices in a manner that incentivised efficient use/maximum greenhouse gas savings and targeting investment capital that improves yield and reduces land-take.  相似文献   

6.
Rapid social and economic progress in fast developing countries such that among the countries in the Association of Southeast Asian Nations (ASEAN) have driven substantial growth in electricity consumption in this region. Whilst this represents significant societal and economic development, it has potentially growing adverse environmental impacts. This raises a concern on sustainable development in the electricity sector in this region. This study evaluates key sustainability challenges in the electricity industries in the five largest energy consumers in ASEAN: Indonesia, Thailand, Malaysia, the Philippines and Vietnam. The 3A's energy sustainability objectives: Accessibility, Availability and Acceptability are used as the sustainability analytical framework. This study also draws together a set of associated indicators and criteria within the analytical framework to analyse the status of the electricity industries in these countries. The analysis shows that key sustainability challenges in the ASEAN-5 are attributable to satisfying rapid demand growth; enhancing security of electricity supply; and mitigating the increase in CO2 emissions from electricity generation. Given the promising resource and technical potential in this region, renewable energy emerges as a favourable option to address these challenges; however, increasing the share of renewable energy in electricity generation requires considerable policy support. This study suggests that there is an opportunity for the ASEAN countries to strengthen regional collaborations through experience and resource sharing to enhance sustainability in the electricity industries. This study also highlights some of the key issues facing the electricity industry, and the need for new generation investment decision support tools which can address these issues.  相似文献   

7.
The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energy–environment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of techno–economic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socio–environmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.  相似文献   

8.
Sustainable development requires implementing suitable policies integrating several competing objectives on economic, environmental, energy and social criteria. Multi-Criteria Decision Analysis (MCDA) using goal programming is a popular and widely used technique to study decision problems in the face of multiple conflicting objectives. MCDA assists policy makers by providing clarity in choosing between alternatives for strategic planning and investments. In this paper, we propose a weighted goal programming model that integrates efficient allocation of resources to simultaneously achieve sustainability related goals on GDP growth, electricity consumption and GHG emissions. We validate the model with application to key economic sectors of the United Arab Emirates to achieve sustainable development goals by the year 2030. The model solution provides a quantitative justification and a basis for comparison in planning future energy requirements and an indispensable requirement to include renewable sources to satisfy long-term energy requirements.  相似文献   

9.
Power generation from biomass is a sustainable energy technology which can contribute to substantial reductions in greenhouse gas emissions, but with greater potential for environmental, economic and social impacts than most other renewable energy technologies. It is important therefore in assessing bioenergy systems to take account of not only technical, but also environmental, economic and social parameters on a common basis. This work addresses the challenge of analysing, quantifying and comparing these factors for bioenergy power generation systems. A life-cycle approach is used to analyse the technical, environmental, economic and social impacts of entire bioelectricity systems, with a number of life-cycle indicators as outputs to facilitate cross-comparison. The results show that similar greenhouse gas savings are achieved with the wide variety of technologies and scales studied, but land-use efficiency of greenhouse gas savings and specific airborne emissions varied substantially. Also, while specific investment costs and electricity costs vary substantially from one system to another the number of jobs created per unit of electricity delivered remains roughly constant. Recorded views of stakeholders illustrate that diverging priorities exist for different stakeholder groups and this will influence appropriate choice of bioenergy systems for different applications.  相似文献   

10.
In many climate change mitigation scenarios, integrated assessment models of the energy and climate systems rely heavily on renewable energy technologies with variable and uncertain generation, such as wind and solar PV, to achieve substantial decarbonization of the electricity sector. However, these models often include very little temporal resolution and thus have difficulty in representing the integration costs that arise from mismatches between electricity supply and demand. The global integrated assessment model, MESSAGE, has been updated to explicitly model the trade-offs between variable renewable energy (VRE) deployment and its impacts on the electricity system, including the implications for electricity curtailment, backup capacity, and system flexibility. These impacts have been parameterized using a reduced-form approach, which allows VRE integration impacts to be quantified on a regional basis. In addition, thermoelectric technologies were updated to include two modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability penalties associated with flexible operation. In this paper, the modeling approach used in MESSAGE is explained and the implications for VRE deployment in mitigation scenarios are assessed. Three important stylized facts associated with integrating high VRE shares are successfully reproduced by our modeling approach: (1) the significant reduction in the utilization of non-VRE power plants; (2) the diminishing role for traditional baseload generators, such as nuclear and coal, and the transition to more flexible technologies; and (3) the importance of electricity storage and hydrogen electrolysis in facilitating the deployment of VRE.  相似文献   

11.
The development of distributed energy systems has important environmental, social and economic implications. Local decision-making processes must be guided by a careful evaluation of the sustainability of production chains and alternative choices. The aim of this study is to explore if and how an integrated assessment can quantify the extent to which bioenergy supply chain development contributes to rural development and energy policy objectives. We applied a Sustainability Impact Assessment (SIA) for local bioenergy development in the alpine area of Lake Como (Italy). We modeled the local bioenergy chain in 2008 and eleven scenarios considering different biomass utilizations, mechanization levels, combustion technologies, and subsidies schemes at 2020. We calculated economic, social and environmental indicators. We interpret and discuss the scenario analysis in order to support the bioenergy planning under the light of its implications for the different policy aims and concerns.  相似文献   

12.
Electricity generation using renewable energy generation technologies is one of the most practical alternatives for network planners in order to achieve national and international Greenhouse Gas (GHG) emission reduction targets. Renewable Distributed Generation (DG) based Hybrid Energy System (HES) is a sustainable solution for serving electricity demand with reduced GHG emissions. A multi-objective optimisation technique for minimising cost, GHG emissions and generation uncertainty has been proposed in this paper to design HES for sustainable power generation and distribution system planning while considering economic and environmental issues and uncertainty in power availability of renewable resources. Life cycle assessment has been carried out to estimate the global warming potential of the embodied GHG emissions from the electricity generation technologies. The uncertainty in the availability of renewable resources is modelled using the method of moments. A design procedure for building sustainable HES has been presented and the sensitivity analysis is conducted for determining the optimal solution set.  相似文献   

13.
Electricity systems models are software tools used to manage electricity demand and the electricity systems, to trade electricity and for generation expansion planning purposes. Various portfolios and scenarios are modelled in order to compare the effects of decision making in policy and on business development plans in electricity systems so as to best advise governments and industry on the least cost economic and environmental approach to electricity supply, while maintaining a secure supply of sufficient quality electricity. The modelling techniques developed to study vertically integrated state monopolies are now applied in liberalised markets where the issues and constraints are more complex. This paper reviews the changing role of electricity systems modelling in a strategic manner, focussing on the modelling response to key developments, the move away from monopoly towards liberalised market regimes and the increasing complexity brought about by policy targets for renewable energy and emissions. The paper provides an overview of electricity systems modelling techniques, discusses a number of key proprietary electricity systems models used in the USA and Europe and provides an information resource to the electricity analyst not currently readily available in the literature on the choice of model to investigate different aspects of the electricity system.  相似文献   

14.
The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers.  相似文献   

15.
Recently, renewable energy sources such as wind power and photovoltaic (PV) are receiving a wide acceptance because they are inexhaustible and nonpolluting. Renewable energy sources are intermittent ones because of climate changes in wind speed and solar irradiance. Due to the continuous demand growth and the necessity for efficient and reliable electricity supply, there is a real need to increase the penetration of gas technologies in power grids. The Canadian government and stakeholders are looking for ways to increase the reliability and sustainability of power grid, and gas-power technologies may provide a solution. This paper explores the integration of gas and renewable generation technologies to provide a qualified, reliable, and environmentally friendly power system while satisfying regional electricity demands and reducing generation cost. Scenarios are evaluated using four key performance indicators (KPIs), economic, power quality, reliability, and environmental friendliness. Various scenarios outcomes are compared based on the defined performance indices. The proposed scenario analysis tool has three components, the geographic information system (GIS) for recording transmission and distribution lines and generation sites, the energy semantic network (ESN) knowledgebase to store information, and an algorithm created in Matlab/Simulink for evaluating scenarios. To interact with the scenario analysis tool, a graphical user interface (GUI) is used where users can define the desired geographic area, desired generation percentage via gas technology, and system parameters. To evaluate the effectiveness of the proposed method, the regional zone of the province of Ontario and Toronto are used as case studies.  相似文献   

16.
This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources – particularly public resources – is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.  相似文献   

17.
18.
This paper examines four mutually exclusive scenarios for the expansion of the Greek electricity system developed by official authorities and representing alternative views on meeting electricity demand. The aim is to encompass all positive and negative side-effects characterizing the electricity generation technologies assumed to participate in each scenario and emphasis is given to the particular role of renewable energy sources which represent a major differentiating factor between them. The calculation of economic, technical and environmental performances of the examined scenarios for the year 2010 shows that electricity planning is a complicated task since improvements in one policy target are accompanied by losses in others. In order to resolve this conflict, the scenarios are comparatively evaluated with two decision support techniques, multicriteria decision analysis and cost–benefit analysis, which are capable of broadening the strict boundaries of a financial analysis while avoiding intuitive solutions that are often applied in practice. Following the two completely different evaluation approaches, it is confirmed that the scenario assuming the highest penetration of renewable energy sources is the best compromise configuration for the Greek power generation sector.  相似文献   

19.
This study presents a framework to quantitatively evaluate decentralized generation and storage technology (DGST) performance and policy impacts in a rural setting. The role of DGSTs in the future energy systems planning of a rural agglomeration in Switzerland is examined using a cost optimization modeling approach. Heat and electricity demand for major sectors are considered. Scenarios introduce DGSTs in a stepwise manner to measure incremental impacts on future capacity planning compared to a baseline scenario. Sub-scenarios also examine the impacts of carbon mitigation policies, and a sensitivity analysis is carried out for key energy carriers and conversion technologies. DGSTs enable a significant reduction in electricity grid usage for the community considered. Small hydro with a storage reservoir and photovoltaics enable the community to become largely self-sufficient with over 80% reductions in grid imports by 2050 compared to the baseline scenario. Storage enables maximum usage of the available hydro potential which also leads to network upgrade deferrals and a significant increase in photovoltaic installations. Investment decisions in small hydro are robust against cost variations, while heating technology investment decisions are sensitive to oil and grid electricity prices. Carbon pricing policies are found to be effective in mitigating local fossil fuel emissions.  相似文献   

20.
Renewable energy systems (RESs) have been promoted for rural electrification as an answer to the growing energy needs of communities while simultaneously satisfying environmental and resource scarcity problems. These off-grid systems however have several challenges in the perspective of sustainability due to the technically and financially weak recipients and users of the projects. There is still, however, less detailed understanding how the technical and economic aspects of the projects can properly match the social aspects to promote sustainability. This paper aimed to further understand the challenges and social impacts of rural electrification projects using RES through a case study of a centralized off-grid solar plant in the Philippines. The study used multiple correspondence analysis (MCA) to identify essential user attributes which explain the users’ electricity consumption behaviors. The community cooperative had difficulties maintaining the facility in the long term due to financial and capacity related challenges. A holistic approach dealing with the technical, economic and social aspects in developing RES projects promote sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号