首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
This study reports the performance and stability of hafnium-indium zinc oxide (HfInZnO) thin film transistors (TFTs) with thermally grown SiO2. The HfInZnO channel layer was deposited at room temperature by a co-sputtering system. We examined the effects of hafnium addition on the X-ray photoelectron spectroscopy properties and on the electrical characteristics of the TFTs varying the concentration of the added hafnium. We found that the transistor on-off currents were greatly influenced by the composition of hafnium addition, which suppressed the formation of oxygen vacancies. The field-effect mobility of optimized HfInZnO TFT was 1.34 cm2 V−1 s−1, along with an on-off current ratio of 108 and a threshold voltage of 4.54 V. We also investigated the effects of bias stress on HfInZnO TFTs with passivated and non-passivated layers. The threshold voltage change in the passivated device after positive gate bias stress was lower than that in the non-passivated device. This result indicates that HfInZnO TFTs are sensitive to the ambient conditions of the back surface.  相似文献   

2.
The threshold voltage change of solution processed gallium-silicon-indium-zinc oxide (GSIZO) thin film transistors (TFTs) annealed at 200 °C has been investigated depending on gallium ratio. GSIZO thin films were formed with various gallium ratios from 0.01 to 1 M ratio. The 30 nm-thick GSIZO film exhibited optimized electrical characteristics, such as field effect mobility (μFE) of 2.2 × 10− 2 cm2/V·s, subthreshold swing (S.S) of 0.11 V/dec, and on/off current ratio (Ion/off) of above 105. The variation of gallium metal cation has an effect on the threshold voltage (Vth) and the field effect mobility (μFE). The Vth was shifted toward positive direction from − 5.2 to − 0.4 V as increasing gallium ratio, and μFE was decreased from 2.2 × 10− 2 to 5 × 10− 3 cm2/V s. These results indicated that gallium was acted as carrier suppressor by degenerating oxygen vacancy. The electrical property of GSIZO TFTs has been analyzed as a function of the gallium ratio in SIZO system, and it clearly showed that variation of gallium contents could change on the performance of TFTs.  相似文献   

3.
The wet etch process for amorphous indium gallium zinc oxide (a-IGZO or a-InGaZnO) by using various etchants is reported. The etch rates of a-IGZO, compared to another indium-based oxides including indium gallium oxide (IGO), indium zinc oxide (IZO), and indium tin oxide (ITO), are measured by using acetic acid, citric acid, hydrochloric acid, perchloric acid, and aqua ammonia as etchants, respectively. In our experimental results, the etch rate of the transparent oxide semiconductor (TOS) films by using acid solutions ranked accordingly from high to low are IZO, IGZO, IGO and ITO. Comparatively, the etch rate of the TOS films by using alkaline ammonia solution ranked from high to low are IGZO, IZO, IGO and ITO, in that order.Using the proposed wet etching process with high etch selectivity, bottom-gate-type thin-film transistors (TFTs) based on a-IGZO channels and Y2O3 gate-insulators were fabricated by radio-frequency sputtering on plastic substrates. The wet etch processed TFT with 30 µm gate length and 120 µm gate width exhibits a saturation mobility of 46.25 cm2 V− 1 s− 1, a threshold voltage of 1.3 V, a drain current on-off ratio > 106 , and subthreshold gate voltage swing of 0.29 V decade− 1. The performance of the TFTs ensures the applicability of the wet etching process for IGZO to electronic devices on organic polymer substrates.  相似文献   

4.
The undoped and fluorine doped gallium tin oxide composite films are prepared by an electron cyclotron resonance metal organic chemical vapor deposition. Characteristics of structural, optical and electrical properties of the fluorine doped gallium tin oxide composite thin films are investigated. The four point probe method, atomic force microscopy and X-ray photoelectron spectroscopy are employed to characterize the composite thin films. UV-visible, X-ray diffraction, scanning electron microscope and Hall measurement performed on fluorine doped gallium tin oxide composite are films deposited on polyethylene terephthalate substrates. The diffraction pattern shows the presence of tetragonal structure with (112) special orientation for fluorine doped gallium tin oxide composite films. The doped composite film on F/Ga + Sn mole ratio of 0.35 is observed the lowest electrical resistivity of 3.35 × 10− 4 Ω cm.  相似文献   

5.
Thin film transistors (TFTs) using amorphous oxides of post-transition metals: indium, gallium, and zinc for the channel materials are fabricated with radio-frequency magnetron sputtering methods for the deposition of the channel and the gate insulator layers, at room temperature with no high-temperature post-deposition annealing process. The TFTs operate as n-channel field-effect transistors with various structures of top/bottom gate and top/bottom source-and-drain contact including the inverse-stagger types, and with various materials for the gate insulators, the electrodes, and the substrates. The TFTs having smoother channel interfaces show the better performance at the saturation mobility beyond 10 cm2 V− 1 s− 1 and the on-to-off current ratio over 108 than the rough channel interfaces. The ring oscillator circuits operate with five-stage inverters of the top-gate TFTs or the inverse-stagger TFTs. Organic light-emission diode cells are driven by a simple circuit of the TFTs. It is also found by a combinatorial approach to the material exploration that the TFT characteristics can be controlled by the composition ratio of the metals in the channel layers. The amorphous oxide channel TFTs fabricated with sputtering deposition at low temperature could be a candidate for key devices of large-area flexible electronics.  相似文献   

6.
We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 Ω/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm2 and exhibits efficiencies of 43 cd/A and 36 lm/W.  相似文献   

7.
Keun Woo Lee 《Thin solid films》2009,517(14):4011-4014
Solution-based indium gallium zinc oxide (IGZO)/single-walled carbon nanotubes (SWNTs) blend have been used to fabricate the channel of thin film transistors (TFTs). The electrical characteristics of the fabricated devices were examined. We found a low leakage current and a higher on/off currents ratio for TFT with SWNTs compared to solution-based TFTs made without SWNTs. The saturation field effect mobility (μsat) of about 0.22 cm2/Vs, the current on/off ratio is ~ 105, the subthreshod swing is ~ 2.58 V/decade and the threshold voltage (Vth) is less than − 2.3 V. We demonstrated that the solution-based blend active layer provides the possibility of producing higher performance TFTs for low-cost large area electronic and flexible devices.  相似文献   

8.
Amorphous zinc oxide thin films have been processed out of an aqueous solution applying a one step synthesis procedure. For this, zinc oxide containing crystalline water (ZnO⋅ × H2O) is dissolved in aqueous ammonia (NH3), making use of the higher solubility of ZnO⋅ × H2O compared with the commonly used zinc oxide. Characteristically, as-produced layers have a thickness of below 10 nm. The films have been probed in standard thin film transistor devices, using silicon dioxide as dielectric layer. Keeping the maximum process temperature at 125 °C, a device mobility of 0.25 cm2V− 1s− 1 at an on/off ratio of 106 was demonstrated. At an annealing temperature of 300 °C, the performance could be optimized up to a mobility of 0.8 cm2V− 1s− 1.  相似文献   

9.
A new strategy is reported to achieve high‐mobility, low‐off‐current, and operationally stable solution‐processable metal‐oxide thin‐film transistors (TFTs) using a corrugated heterojunction channel structure. The corrugated heterojunction channel, having alternating thin‐indium‐tin‐zinc‐oxide (ITZO)/indium‐gallium‐zinc‐oxide (IGZO) and thick‐ITZO/IGZO film regions, enables the accumulated electron concentration to be tuned in the TFT off‐ and on‐states via charge modulation at the vertical regions of the heterojunction. The ITZO/IGZO TFTs with optimized corrugated structure exhibit a maximum field‐effect mobility >50 cm2 V?1 s?1 with an on/off current ratio of >108 and good operational stability (threshold voltage shift <1 V for a positive‐gate‐bias stress of 10 ks, without passivation). To exploit the underlying conduction mechanism of the corrugated heterojunction TFTs, a physical model is implemented by using a variety of chemical, structural, and electrical characterization tools and Technology Computer‐Aided Design simulations. The physical model reveals that efficient charge manipulation is possible via the corrugated structure, by inducing an extremely high carrier concentration at the nanoscale vertical channel regions, enabling low off‐currents and high on‐currents depending on the applied gate bias.  相似文献   

10.
The highly-doped buried layer (carrier concentration of ~ 1019 cm− 3) in an amorphous indium-gallium-zinc oxide (a-IGZO) channel layer of thin film transistor (TFT) led to dramatic improvements in the performance and prolonged bias-stability without any high temperature treatment. These improvements are associated with the enhancement in density-of-states and carrier transport. The channel layer is composed of Ga-doped ZnO (GZO) and a-IGZO layers. Measurements performed on GZO-buried a-IGZO (GB-IGZO) TFTs indicate enhanced n-channel active layer characteristics, such as Vth, μFE, Ioff, Ion/off ratio and S.S, which were enhanced to 1.2 V, 10.04 cm2/V·s, ~ 10−13A, ~ 107 and 0.93 V/decade, respectively. From the result of simulation, a current path was well defined through the surface of oxide active layer especially in GB-IGZO TFT case because the highly-doped buried layer plays the critical role of supplying sufficient negative charge density to compensate the amount of positive charge induced by the increasing gate voltage. The mechanism underlying the high performance and good stability is found to be the localization effect of a current path due to a highly-doped buried layer, which also effectively screens the oxide bulk and/or back interface trap-induced bias temperature instability.  相似文献   

11.
High performance self-aligned top-gate zinc oxide (ZnO) thin film transistors (TFTs) utilizing high-k Al2O3 thin film as gate dielectric are developed in this paper. Good quality Al2O3 thin film was deposited by reactive DC magnetron sputtering technique using aluminum target in a mixed argon and oxygen ambient at room temperature. The resulting transistor exhibits a field effect mobility of 27 cm2/V s, a threshold voltage of − 0.5 V, a subthreshold swing of 0.12 V/decade and an on/off current ratio of 9 × 106. The proposed top-gate ZnO TFTs in this paper can act as driving devices in the next generation flat panel displays.  相似文献   

12.
Dong-Jin Yun 《Thin solid films》2009,517(16):4644-4649
Al-doped ZnO thin-films were deposited with the radio frequency magnetron sputtering technique at various temperatures and sputtering powers for a source/drain electrode in the pentacene thin-film transistor. With the increase in the deposition temperature and the decrease in the radio frequency sputtering power, the crystallinity was increased and the surface roughness was decreased, which lead to the decrease in the electrical resistivity of the film. Al-doped ZnO film deposited at 200 °C and sputtering power of 50 W showed a low resistivity (9.73 × 104 μΩcm), high crystallinity, low roughness and uniform surface morphology. The pentacene thin-film transistor fabricated with Al-doped ZnO film as a source/drain electrode showed a device performance, (mobility: 7.89 × 10 3 cm2/Vs and on/off ratio: ~ 5 × 104) which is comparable with an indium tin oxide electrode grown at room temperature.  相似文献   

13.
High-quality Al-doped zinc oxide (AZO) thin films have been deposited on quartz substrates by radio-frequency magnetron sputtering at room temperature for thin film solar cell applications as transparent conductive oxide (TCO) electrode layers. Effects of post-deposition annealing treatment in pure nitrogen and nitrogen/hydrogen atmosphere have been investigated. Annealing treatments were carried out from 300 °C to 600 °C for compatibility with typical optoelectronic device fabrication processes. A series of characterization techniques, including X-ray diffraction, scanning electron microscopy, Hall, optical transmission, and X-ray photoelectron spectroscopy has been employed to study these AZO materials. It was found that there were significant changes in crystallinity of the films, resistivity increased from 4.60 × 10− 4 to 4.66 × 10− 3 Ω cm and carrier concentration decreased from 8.68 × 1020 to 2.77 × 1020 cm− 3 when annealing in 400 °C pure nitrogen. Whereas there were no significant changes in electrical and optical properties of the AZO films when annealing in 300-500 °C nitrogen/hydrogen atmosphere, the electrical stability of the AZO films during the hydrogen treatment is attributed to both desorption of adsorbed oxygen from the grain boundaries and production of additional oxygen vacancies that act as donor centers in the films by removal of oxygen from the ZnO matrix. These results demonstrated that the AZO films are stably suited for TCO electrodes in display devices and solar cells.  相似文献   

14.
Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (ID-VD), drain current-gate voltage (ID-VG), threshold voltage (VT), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 × 10− 3 Ω·cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm2/V s and the on/off ratio of ~ 105. Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.  相似文献   

15.
The influence of deposition power, thickness and oxygen gas flow rate on electrical and optical properties of indium tin oxide (ITO) films deposited on flexible, transparent substrates, such as polycarbonate (PC) and metallocene cyclo-olefin copolymers (mCOC), at room temperature was studied. The ITO films were prepared by radio frequency magnetron sputtering with the target made by sintering a mixture of 90 wt.% of indium oxide (In2O3) and 10 wt.% of tin oxide (SnO2). The results show that (1) average transmission in the visible range (400-700 nm) was about 85%-90%, and (2) ITO films deposited on glass, PC and mCOC at 100 W without supplying additional oxygen gas had optimum resistivity of 6.35 × 10−4 Ω-cm, 5.86 × 10−4 Ω-cm and 6.72 × 10−4 Ω-cm, respectively. In terms of both electrical and optical properties of indium tin oxide films, the optimum thickness was observed to be 150-300 nm.  相似文献   

16.
The effect of the indium content in indium tin oxide (ITO) films fabricated using a solution-based process and ITO channel thin film transistors (TFTs) was examined as a function of the indium mole ratio. The carrier concentration and resistivity of the ITO films could be controlled by the appropriate treatments. The TFTs showed an increase in the off-current due to the enhanced conductivity of the ITO channel layer with increasing indium mole ratios, producing an increase in the field effect mobility. The characteristics of the a-ITO channel TFT showed the best performance (μFE of 3.0 cm2 V− 1 s− 1, Vth of 2.0 V, and S value of 0.4 V/decade) at In:Sn = 5:1.  相似文献   

17.
Tin dioxide is emerging as an important material for use in copper indium gallium diselenide based solar cells. Amorphous tin dioxide may be used as a glass overlayer for covering the entire device and protecting it against water permeation. Tin dioxide is also a viable semiconductor candidate to replace the wide band gap zinc oxide window layer to improve the long-term device reliability. The film properties required by these two applications are different. Amorphous films have superior water permeation resistance while polycrystalline films generally have better charge carrier transport properties. Thus, it is important to understand how to tune the structure of tin dioxide films between amorphous and polycrystalline. Using X-ray diffraction (XRD) and Hall-effect measurements, we have studied the structure and electrical properties of tin dioxide films deposited by magnetron sputtering as a function of deposition temperature, sputtering power, feed gas composition and film thickness. Films deposited at room temperature are semicrystalline with nanometer size SnO2 crystals embedded in an amorphous matrix. Film crystallinity increases with deposition temperature. When the films are crystalline, the X-ray diffraction intensity pattern is different than that of the powder diffraction pattern indicating that the films are textured with (101) and (211) directions oriented parallel to the surface normal. This texturing is observed on a variety of substrates including soda-lime glass (SLG), Mo-coated soda-lime glass and (100) silicon. Addition of oxygen to the sputtering gas, argon, increases the crystallinity and changes the orientation of the tin dioxide grains: (110) XRD intensity increases relative to the (101) and (211) diffraction peaks and this effect is observed both on Mo-coated SLG and (100) silicon wafers. Films with resistivities ranging between 8 mΩ cm and 800 mΩ cm could be deposited. The films are n-type with carrier concentrations in the 3 × 1018 cm− 3 to 3 × 1020 cm− 3 range. Carrier concentration decreases when the oxygen concentration in the feed gas is above 5%. Electron mobilities range from 1 to 7 cm2/V s and increase with increasing film thickness, oxygen addition to the feed gas and film crystallinity. Electron mobilities in the 1-3 cm2/V s range can be obtained even in semicrystalline films. Initial deposition rates range from 4 nm/min at low sputtering power to 11 nm/min at higher powers. However, deposition rate decreases with deposition time by as much as 30%.  相似文献   

18.
In this study, we investigated the electrical characteristics and the stability of amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) from the viewpoint of active layer composition. Active layers of TFTs were deposited by r.f. sputtering. Two kinds of sputtering targets, which have different compositional ratios of In:Ga:Zn, were used to make variations in the active layer composition. All the fabricated IGZO TFTs showed more excellent characteristics than conventional amorphous silicon TFTs. However, in accordance with the Ga content, IGZO TFTs showed somewhat different electrical characteristics in values such as the threshold voltage and the field effect mobility. The device stability was also dependent on the Ga content, but had trade-off relation with the electrical characteristics.  相似文献   

19.
Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 × 10−4 Ω cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 × 10−3 Ω cm.  相似文献   

20.
Zinc oxide/indium/zinc oxide multilayer structures have been obtained on glass substrates by magnetron sputtering. The effects of indium thickness on optical and electrical properties of the multilayer structures are investigated. Compared to a single zinc oxide layer, the carrier concentration increases from 8 × 1018 cm−3 to 1.8 × 1020 cm−3 and Hall mobility decreases from 10 cm2/v s to 2 cm2/v s for the multilayer structure at 8 nm of indium thickness. With the increase of indium thickness, the transmittance decreases and optical band gap shifts to lower energy in multilayer structures. Results are understood based on Schottky theory, interface scattering mechanism and the absorption of indium layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号