首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of In0.53Ga0.47As/GaAs0.51Sb0.49 terahertz quantum cascade lasers is reviewed, starting with the first demonstration, through growth direction dependent performance issues, to high performance devices. This InP-based material system is an attractive alternative to the almost exclusively used GaAs/AlxGa1-xAs. Devices achieve maximum operating temperatures of 142 K and exhibit broadband lasing over a range of 660 GHz. A special focus has to be put on the growth direction related interface asymmetry for this material system. Symmetric active region designs are an elegant technique to investigate such asymmetries. A significant impact on the device performance is observed and attributed to interface roughness scattering.  相似文献   

2.
Heterostructures of epitaxially grown biaxial ZnO/Ge, and coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge heterostructured nanowires with ideal epitaxial interfaces between the semiconductor ZnO sublayer and the Ge sublayer have been fabricated via a two‐stage chemical vapor–solid process. Structural characterization by high‐resolution transmission electron microscopy and electron diffraction indicates that both the ZnO and Ge sublayers in the heterostructures are single crystalline. A good epitaxial relationship of (100)ZnO∥(2 0)Ge exists at the interface between ZnO and Ge in the ZnO/Ge biaxial heterostructure. There is also an epitaxial relationship of (0 0)ZnO∥(020)Ge at the interface between the ZnO and Ge substructures in the coaxial ZnO/Ge/ZnO heterostructures, and a good epitaxial relationship of (0 0)ZnO∥(0 0)Ge at the interface between ZnO and Ge in the Ge/ZnO/Ge coaxial heterostructure. Structural models for the crystallographic relationship between the wurtzite‐ZnO and diamond‐like cubic‐Ge subcomponents in the heterostructures are given. The optical properties for the synthesized heterostructures are studied by spatially resolved cathodoluminescence spectra at low temperature (20 K). Excitingly, the unique biaxial and coaxial heterostructures display unique new luminescence properties. It is concluded that the ideal epitaxial interface between ZnO and Ge in the prepared heterostructures induces new optical properties. The group II–VI Ge‐based nanometer‐scale heterostructures and their interesting optical properties may inspire great interest in exploring related epitaxial heterostructures and their potential applications in lasers, gas sensors, solar energy conversion, and nanodevices in the future.  相似文献   

3.
The effects of controlling InGaAs substrate temperature during electron beam deposition of HfO2 on electrical characteristics of W/HfO2/n-In0.53Ga0.47As capacitors are investigated. It is found that by depositing a thin HfO2 layer at the interface when substrate temperature is raised to 300 °C, frequency dispersion at depletion and accumulation conditions is reduced and interface state density is lowered regardless of the HfO2 thickness. Cross-sectional transmission electron microscopy images have revealed that the formation of mesoscopic voids in the InGaAs substrate near the interface is suppressed with HfO2deposition at 300 °C at the interface. A band diagram with an additional bulk trap energy level has been proposed to explain the frequency dispersion and conductance peaks at accumulation condition.  相似文献   

4.
Cross-interactions between Cu/Sn/Pd and Ni/Sn/Pd sandwich structures were investigated in this work. For the Cu/Sn/Pd case, the growth behavior and morphology of the interfacial (Pd,Cu)Sn4 compound layer was very similar to that of the single Pd/Sn interfacial reaction. This indicates that the growth of the (Pd,Cu)Sn4 layer at the Sn/Pd interface would not be affected by the opposite Cu/Sn interfacial reaction. We can conclude that there is no cross-interaction effect between the two interfacial reactions in the Cu/Sn/Pd sandwich structure. For the Ni/Sn/Pd case, we observed that: (1) after 300 s of reflow time, the (Pd,Ni)Sn4 compound heterogeneously nucleated on the Ni3Sn4 compound layer at the Sn/Ni interface; (2) the growth of the interfacial PdSn4 compound layer was greatly suppressed by the formation of the (Pd,Ni)Sn4 compound at the Sn/Ni interface. We believe that this suppression of PdSn4 growth is caused by heterogeneous nucleation of the (Pd,Ni)Sn4 compound in the Ni3Sn4 compound layer, which decreases the free energy of the entire sandwich reaction system. The difference in the chemical potential of Pd in the PdSn4 phase at the Pd/Sn interface and in the (Pd,Ni)Sn4 phase at the Sn/Ni interface is the driving force for the Pd atomic flux across the molten Sn. The diffusion of Ni into the ternary (Pd,Ni)Sn4 compound layer controls the Pd atomic flux across the molten Sn and the growth of the ternary (Pd,Ni)Sn4 compound at the Sn/Ni interface.  相似文献   

5.
Si3N4/GaAs metal-insulator-semiconductor (MIS) interfaces with Si(10Å)/ Al0.3Ga0.7As (20Å) interface control layers have been characterized using capacitance-voltage (C-V) and conductance methods. The structure was in situ grown by a combination of molecular beam epitaxy and chemical vapor deposition. A density of interface states in the 1.1 × 1011 eV-1 cm-2 range near the GaAs midgap as determined by the conductance loss has been attained with an ex situ solid phase annealing of 600°C in N2 ambient. A dip quasi-static C-V demonstrating the inversion of the minority-carrier verifies the decent interface quality of GaAs MIS interface. The hysteresis and frequency dispersion of the MIS capacitors were lower than 100 mV, some of them as low as 50 mV under a field swing of about ±2 MV/cm. The increase of the conductance loss at higher frequencies was observed when employing the surface potential toward conduction band edge, suggesting the dominance of faster traps. Self-aligned gate depletion mode GaAs metal-insulator-semiconductor field-effect transistors with Si/Al0.3Ga0.7As interlayers having 3 μm gate lengths exhibited a transconductance of about 114 mS/mm. The present article reports the first application of pseudomorphic Si/ Al0.3Ga0.7As interlayers to ideal GaAs MIS devices and demonstrates a favorable interface stability.  相似文献   

6.
A number of organic/conductor and organic/organic interfaces have been examined by EPR spectroscopy to ascertain the areal concentration of organic ions at the interface. Organic hole transport materials such as NPB and TAPC at an interface with MoOx are found to have areal concentrations on the order of 1014 cations per cm2. C60 at an interface with MoOx creates ≈1013 cations per cm2 depending on the roughness of the substrate. However, C60 at an interface with Mg or Ag produces only about 4 × 1012 anions per cm2. Ion concentrations are generally in accord with the energy levels (adiabatic IP, EA etc) of the two materials at a given interface.  相似文献   

7.
The electromigration that occurs in a Cu/Sn-9Zn/Cu sandwich was investigated for void formation at room temperature with 103 A/cm2. A focused ion beam revealed that voids nucleated at the intermetallic compound (IMC)/solder interface regardless of the electron flow direction. The needle-like voids initiated at the cathode Cu5Zn8/solder interface due to the outward diffusion of Zn atoms in the Zn-rich phase and expanded as a result of the surface diffusion of Sn atoms upon current stressing.  相似文献   

8.
Adhesion strength of leadframe/EMC interfaces   总被引:1,自引:0,他引:1  
Cu-based leadframe sheets were oxidized in alkaline solutions to produce brown and/or black oxide on the surfaces, and molded with epoxy molding compound (EMC). The adhesion strength of leadframe/EMC interface was measured using sandwiched double-cantilever beam (SDCB) specimens and pull-out specimens. Results showed that the adhesion strength of leadframe/EMC interface was inherently very poor but could be increased drastically with the nucleation of acicular CuO precipitates. The presence of smooth-faceted Cu2O on the surface of the leadframe gave close to zero fracture toughness (GC) and suitable pull strength (PS). A direct correlation between GC and PS showed that PS can be a measure of GC only in a limited range.  相似文献   

9.
Taking into account defect density in WSe2, interface recombination between ZnO and WSe2, we presented a simulation study of ZnO/crystalline WSe2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0 × 1011 cm-2) in c-WSe2 and large trap cross-section (> 1.0 × 10-10 cm2) have serious impact on solar cell efficiency. A thin p-WSe2 layer is intentionally inserted between ZnO layer and c-WSe2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency.  相似文献   

10.
The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.  相似文献   

11.
Electromigration in the Ni/Sn-Zn/Cu solder interconnect was studied with an average current density of 3.51 × 104 A/cm2 for 168.5 h at 150°C. When the electrons flowed from the Ni side to the Cu side, uniform layers of Ni5Zn21 and Cu5Zn8 were formed at the Ni/Sn-Zn and Cu/Sn-Zn interfaces. However, upon reversing the current direction, where electron flow was from the Cu side to the Ni side, a thicker Cu6Sn5 phase replaced the Ni5Zn21 phase at the Ni/Sn-Zn interface, whereas at the Cu/Sn-Zn interface, a thicker β-CuZn phase replaced the Cu5Zn8 phase.  相似文献   

12.
In this study, the interface chemistry and adhesion strengths between porous SiO2 low-dielectric-constant film and SiN capping layer as well as SiC etch stop layer have been investigated under different plasma treatments. Elements of Si, O, and N constructed an interlayer region with mixing Si-N and Si-O bonds at the interface between the porous SiO2 film and SiN capping layer. After plasma treatments especially O2 plasma, the oxygen content at the interface increased, and the binding energy obviously shifted to a higher level. Under nanoindentation and nanoscratch tests, interface delamination occurred, and the interface adhesion strength was accordingly measured. After plasma treatments especially the O2 plasma, more Si-O bonds of high binding energy existed at the interface, and thus the interface adhesion strength was effectively improved. The adhesion energy of SiO2/SiN and SiC/SiO2 interfaces was enhanced to 4.7 and 10.5 J/m2 measured by nanoindentation test, and to 1.3 and 2.0 J/m2 by nanoscratch test, respectively.  相似文献   

13.
We present results of the growth of InAsxP1−x/InP strained heterostructures by low pressure metalorganic vapor phase epitaxy. A large incorporation of arsenic into the InAsP ternary was observed using tertiarylbutylarsine as precursor. High resolution x-ray diffraction, photoluminescence, and optical absorption measurements for InAsP/InP strained multiple quantum wells reveal that the InAsP/InP interface is very sensitive to growth interruption. A systematic study of a growth in terruption sequence designed to improve the InAs/InP interface was carried out. For nonoptimal growth interruption procedures a large density of interface states is created, probably as a consequence of compositional modifications within the interface region. We find that the absorption spectrum may reveal a significant density of interface states. Thus, photoluminescence on its own is insufficient to characterize the interface roughness even for structures showing narrow low-temperature photoluminescence peaks. We also observe an enhancement of the As content for structures grown on InP (001) relative to those simultaneously grown on InP(001) two degrees off toward [100], which suggests that the composition of As in the ternary is limited by its surface diffusion.  相似文献   

14.
The structural and electrical properties of SrTa2O6(SrTaO)/n-In0.53GaAs0.47(InGaAs)/InP structures where the SrTaO was grown by atomic vapor deposition, were investigated. Transmission electron microscopy revealed a uniform, amorphous SrTaO film having an atomically flat interface with the InGaAs substrate with a SrTaO film thickness of 11.2 nm. The amorphous SrTaO films (11.2 nm) exhibit a dielectric constant of ∼20, and a breakdown field of >8 MV/cm. A capacitance equivalent thickness of ∼1 nm is obtained for a SrTaO thickness of 3.4 nm, demonstrating the scaling potential of the SrTaO/InGaAs MOS system. Thinner SrTaO films (3.4 nm) exhibited increased non-uniformity in thickness. From the capacitance-voltage response of the SrTaO (3.4 nm)/n-InGaAs/InP structure, prior to any post deposition annealing, a peak interface state density of ∼2.3 × 1013 cm−2 eV−1 is obtained located at ∼0.28 eV (±0.05 eV) above the valence band energy (Ev) and the integrated interface state density in range Ev + 0.2 to Ev + 0.7 eV is 6.8 × 1012 cm−2. The peak energy position (0.28 ± 0.05 eV) and the energy distribution of the interface states are similar to other high-k layers on InGaAs, such as Al2O3 and LaAlO3, providing further evidence that the interface defects in the high-k/InGaAs system are intrinsic defects related to the InGaAs surface.  相似文献   

15.
It is observed that the interfacial reactions in Sn/Co couples are different at the anode and cathode sides as a result of temperature differences caused by the Peltier effect. The Sn/Co interfacial reactions were examined at 180°C with the passage of an electric current of 5000 A/cm2. The reaction phase was CoSn3. The reaction layer at the Co/Sn anode interface in which the electrons moved from Co to Sn was thicker than that at the Sn/Co cathode interface, but this phenomenon could not be reasonably accounted for using the electromigration effect. The temperature of Sn at the Co/Sn anode interface was 4.5°C higher than that at the Sn/Co cathode interface with the passage of 5000 A/cm2 electric current at 180°C. Temperature differences were determined with a carefully designed cathode–anode switching experiment using thermocouples, and the results were confirmed with thermal infrared microscope measurements and calculated results based on heat transfer models.  相似文献   

16.
The effect of fluorine interface redistribution on dc and microwave performances of SF6 plasma-treated AlGaN/GaN high-electron mobility transistors (HEMTs) was investigated. Selective SF6 plasma treatment of the AlGaN/GaN HEMT gate interface yielded increases in the current gain cut-off frequency (fT) and maximum frequency of oscillation (fmax) of almost 60%. Annealing induced fluorine interface redistribution showed a low impact on the electron drift mobility and a negligible impact on the peak transconductance of the HEMTs. A large impact of the fluorine interface redistribution was observed for the threshold voltage and sheet carrier concentration of two-dimensional electron gas (2DEG). Consequently, it led to a decrease in the fT and fmax values, but the values were still higher than those of conventional reference HEMTs.  相似文献   

17.
A TiO2/P3HT hybrid solar cell was fabricated by infiltrating P3HT into the pores of TiO2 nanorod arrays. To further enhance the photovoltaic performance, anthracene-9-carboxylic acid was employed to modify the interface of TiO2/P3 HT before P3HT was coated. Results revealed that the interface treatment significantly enhances the photovoltaic performance of the cell. The efficiency of the hybrid solar cells reaches 0.28% after interface modification, which is three times higher compared with the un-modified one. We find that except for the increased exciton dissociation efficiency recognized by the previous reports, the suppressing of electron back recombination is another important factor leading to the enhanced photovoltaic performance.  相似文献   

18.
Interface properties of MBE-grown ZnSe/GaAs substrate systems formed on variously pretreated GaAs surfaces, which include standard chemically etched (5H2SO4:1H2O2: 1H2O), (NH4)2Sx-, NH4I-, and HF-pretreated surfaces, are investigated by capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements. A HF-pretreated and annealed ZnSe/p-GaAs sample showed marked reduction of interface state density, Nss, with Nss,min below 4 x 1011cm-2 eV-1 near Ec- EFS= 1.0 eV. The value is about one order of magnitude smaller than that of the standard chemically etched interface, and comparable to (NH4)2Sx- pretreated interface. Nevertheless, C-V characteristics of ZnSe/nGaAs samples, which were measured for the first time, indicate that interface Fermi level, EFS, is not completely unpinned due to the interface states located above the midgap. A consistent result was obtained by DLTS method in determining EFS position. The influence of Nss distribution on vertical current conduction is also analyzed. It is found that U-shaped interface states with Nss(E) > 1 x 1013 cm-2 eV-1 above the midgap may cause an excess voltage drop larger than a few volts at the interface.  相似文献   

19.
利用第一原理对双键及桥氧两种二氧化硅与硅界面模型进行了理论研究。结果表明双键模型的界面转变区宽度较大。这种差别会导致MOSFET栅漏电的不同。遂穿电流的计算表明界面双键模型结构有较大的栅漏电。  相似文献   

20.
In Ge-based metal oxide semiconductor technology, the insertion of a passivation layer seems to be crucial in unpinning the Fermi level at the interface and in reducing the amount of interface defects. GeO2 was obtained by atomic oxygen (AO), molecular oxygen or ozone chemisorption. Atomic or molecular oxygen was used in the deposition of Gd2O3. Gd2O3 thin films were grown by molecular beam deposition directly on (1 0 0) Ge or on a GeO2 interlayer. The chemical nature of the Gd2O3/Ge interface was characterized by time-of-flight secondary ion mass spectrometry depth profiles. Without GeO2 layer Gd and Ge interdiffusion is observed and the concomitant formation of GeOGd bonds is also supported by X-ray photoelectron spectroscopy energy shift at the Ge 3d peak and by a singularity in the interface defect energy distribution at ∼0.48 eV. Further, depending on the GeO2 formation process, the profile shape of Ge and O related secondary ions at the GeO2/Ge interface can be related with a defective Ge region close to the GeO2/Ge. In particular, considering the ratio between Ge and GeO2 related secondary ion signals, the interlayer passivated using AO turns out to be comparatively enriched in Ge, while the use of ozone for GeO2 formation leads to a Ge deficient layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号