首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为系统地研究纳米SiO2对交联聚乙烯(XLPE)交/直流击穿强度和交/直流耐电树枝特性的影响,使用平行双螺杆分别制备了含0.5wt%和1wt%纳米SiO2的纳米SiO2/XLPE复合材料,以商用直流电缆料和普通XLPE作为参照,测试了掺杂纳米SiO2对XLPE交流电树枝和直流接地电树枝的引发和生长特性及交/直流击穿强度的影响。实验结果表明,商用直流电缆料的直流击穿强度与普通XLPE相近,但其直流接地电树枝的引发更困难,树枝生长也更缓慢;随着纳米SiO2添加量增大,纳米SiO2/XLPE复合材料交/直流击穿强度的作用增强,对交/直流电树枝引发的抑制作用也增强,1wt%纳米SiO2/XLPE复合材料具有显著抑制直流接地电树枝生长的效果,其直流接地电树枝引发和生长特性均优于商用电缆料;1wt%纳米SiO2/XLPE复合材料的交流击穿强度和交流电树枝起始电压均高于普通XLPE,但其对交流电树枝的生长抑制作用仅局限在电树枝生长初期,电树枝生长达到一定阶段后,1wt%纳米SiO2/XLPE复合材料中的电树枝生长速度超过普通XLPE。   相似文献   

2.
DC resistivity and AC breakdown strength of flexible polypropylene (trade marked name Hifax) cable insulation materials have been measured at selected temperatures. The AC breakdown data has been analysed in terms of Weibull distribution. The results show that Hifax cable insulation has a higher AC breakdown strength than EPR (ethylene propylene rubber) and XLPE (crosslinked polyethylene), both of which are widely used for DC cable insulation. It is concluded that blending Hifax with ordinary polypropylene decreases the breakdown strength. The DC resistivity of Hifax is larger than that of XLPE and oil-impregnated paper insulations. It has been found that the electrical stress coefficient of resistivity of Hifax cable insulation increases with temperature, which may have important engineering implications. An anomalous drop in resistivity has been observed for Hifax at high electrical fields, suggesting charge trapping and detrapping processes are present in these cable insulations.  相似文献   

3.
Ethylene vinyl acetate (EVA) co-polymers can potentially provide novel materials for inclusion into extruded high voltage cable systems, providing a degree of electrical conductivity whilst avoiding the dispersion problems associated with conventional particulate fillers or conducting polymers. Although a degree of conductivity can decrease the electrical breakdown performance, it can help to suppress the development of space charge and increase the tree initiation voltage leading to enhanced dielectric properties. In addition, novel two phase morphologies can be formulated leading to the ability to control key thermal and mechanical properties and the ability to tailor these to suit the application. In addition, one of the problems with conventional cross-linked polyethylene (XLPE) is that it cannot easily be recycled; therefore, in this time of increasing environmental awareness, it is prudent to begin investigations into alternative recyclable materials to replace XLPE in extruded cables for the medium to long term. The current article focuses on the crystallisation behaviour, morphology, mechanical and dielectric properties of a range of polymeric insulation systems based on an EVA co-polymer together with a high density polyethylene (HDPE) component. The morphology was controlled by choosing co-polymers containing different vinyl acetate contents together with appropriate crystallisation routes. The relationships between the morphology and the mechanical and dielectric properties were explored. Blends containing a low vinyl acetate content co-polymer combined with HDPE have significant potential to replace XLPE in cable systems and have the advantage of being easily recycled at the end of their service life.  相似文献   

4.
The electrical tree initiation and propagation mechanism in XLPE (cross-linked polyethylene) with artificial voids filled with N2 gas, O2 gas or moisture was investigated. Treeing phenomena (pits, filamentary channel, voids, bridge, etc.) were observed and dielectric deterioration and breakdown mechanism were discussed. Oxidized region and rough electrode surface acted as the stress concentration point and from which electrical treeing deterioration processes were initiated after a tree inception time and started to propagate three-dimensionally toward the plane electrode. The width of the broken tree channel was 117 μm and the thickness of the tree was 1 to 30 μm. The dielectric breakdown occurred when a tree channel bridged the two electrodes.  相似文献   

5.
Epoxy–clay nanocomposites were prepared using two types of surface-treated montmorillonite (Closite 30B and Nanomer I28E). Wide angle X-ray scattering showed that all the nanocomposites had an intercalated structure. Improvements in tensile and fracture properties were found. The pure epoxy polymer was very brittle with a fracture energy, G c, of 131 J m?2. The addition of the nanoclays significantly increased the value of G c, up to 240 J m?2 for 5 wt% C30B. The toughening mechanisms acting in the nanocomposites were identified using scanning electron microscopy as crack deflection and plastic deformation of the epoxy matrix around the clay platelets following debonding. From electrical testing, the permittivity and loss angle of the nanocomposites decreased, and their breakdown strength increased as desired for insulation applications. The breakdown strength of the pure epoxy was found to be 11.7 kV mm?1, while for a 2 wt% C30B nanocomposite, it increased to 14.7 kV mm?1. It was concluded that the restriction of chain mobility inhibited electrical polarisation and thus decreased the permittivity and loss angle. The electrical damage zone was analysed using scanning electron microscopy. It was found that the higher resistance-to-surface degradation by partial discharges and the creation of a tortuous electrical path, which delayed the propagation of the electrical tree, were the main factors which improved the breakdown strengths of the nanocomposites.  相似文献   

6.
Electrical discharges in accelerating structures are one of the key issues limiting the performance of future high energy accelerators such as the Compact Linear Collider (CLIC). Fundamental understanding of breakdown phenomena is an important part of the CLIC feasibility study. The present work concerns the experimental study of breakdown using Scanning Electron Microscopes (SEMs). An SEM gives us the opportunity to achieve high electrical gradients of 1 kV/μm which corresponds to 1 GV/m by exciting a probe needle with a high voltage power supply and controlling the positioning of the needle with a linear piezo motor. The gap between the needle tip and the surface is controlled with sub-micron precision. A second electron microscope equipped with a Focused Ion Beam (FIB) is used to create surface corrugations and to sharpen the probe needle to a tip radius of about 50 nm. Moreover it is used to prepare cross-sections of a voltage breakdown area in order to study the geometrical surface damages as well as the elemental composition of the breakdown.  相似文献   

7.
Low frequency (LF) voltage and current are important parameters in electrical metrology. The standards for LF voltage and current are established by assigning AC–DC transfer difference to thermal devices, i.e. thermal converters or thermal transfer standard along with current shunts. Automated calibration systems have been developed based on Null method and measurement technique developed by Budovsky for calibration of precision calibrator in LF voltage and current against thermal devices. The technique based on the Algorithm developed by Dr. Ilya Budovsky (National Metrology Institute (NMI), Australia) has been compared with the conventional null technique. Indigenously developed software has been used to calibrate the precision calibrator in the entire LF voltage and current range using Holt thermal converters and current shunts. Calibration results at 1 V, 10 V in the frequency range from 10 Hz to 1 MHz as well as calibration results of 1 A in the frequency range from 40 Hz to 10 kHz are presented in this paper. These result shows that the measurement technique developed by Budovsky has reduced the complexity of AC–DC transfer measurements, measurement time and the uncertainty in measurement.  相似文献   

8.
Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics were investigated via an improved dielectric spectroscopy. A new low-frequency dielectric relaxation, which was assigned to space charge polarization, was found shifting towards higher frequency with increasing bias voltage in the improved spectra. It was suggested that the Schottky barrier at grain boundary was lowered under dc bias resulting in higher possibility for carriers to migrate. Therefore, the relaxation time was decreased, which was in accordance with rightward shift of this relaxation under increased dc bias. In addition, dependence of the widely reported high-frequency relaxation (>?105 Hz) and middle-frequency relaxation (103–105 Hz) on bias voltage was also discussed. Permittivity contributed by either high-frequency or middle-frequency relaxation presented inverse dependence on dc bias. Discrepancy on barrier parameters was obtained assuming both of them physically correlated with the barrier at grain boundary.  相似文献   

9.
Here, we report the DC and AC electrical properties of polyvinyl alcohol (PVA)–selenium (Se) nanocomposite films in the temperature (T) range 298 K ≤ T ≤ 420 K and in the frequency (f) range 120 Hz ≤ f ≤ 1 MHz. The introduction of selenium nanoparticles into the PVA matrix slightly increases the values of DC conductivity whose temperature dependency obeys Vogel–Fulcher–Tammann law. The AC conductivity follows a power law with frequency in which the temperature dependence of the frequency exponent suggests that the correlated barrier hopping is the dominant charge transport mechanism for the nanocomposite films. Comparative discussions with Dyre’s random free-energy barrier model have also been made in this regard. The increase in AC conductivity with increase in nanoparticles concentration was also observed and attributed to the corresponding increase in conducting channels in the PVA matrix. The real part of the dielectric constant increases either with increase in temperature or with increase in selenium nanoparticles loading into the polymer matrix, which may be attributed to the enhancement of interfacial polarization. The frequency dispersion of the dielectric spectra has been modeled according to the modified Cole–Cole equation. Well-defined peaks were appeared in the plotting of imaginary part of electric modulus with frequency above room temperature, which was fitted with suitable equations to account for the deviations from ideal Debye-type behavior. Though the current–voltage characteristics are linear at smaller voltages, it appreciably becomes nonlinear at higher voltages. This nonlinearity has been accounted in light of Werner’s model and back to back Schottky diode model.  相似文献   

10.
Currently, studies on the development of high voltage superconducting machines are being conducted actively in many research institutes all over the world (Kang et al. in IEEE Trans. Appl. Supercond. 17:1493–1496, 2007). In this paper, a sub-cooled liquid nitrogen cooling method is considered to design current lead parts for a 154 kV superconducting apparatus because of its excellent dielectric and mechanical characteristics (Kang et al. in IEEE Trans. Appl. Supercond. 17:1493–1496, 2007). Insulation gases such as SF6, CF4, and N2 are considered as suitable pressurization gases for enhancing the dielectric characteristics of a superconducting system in the Republic of Korea (Kang and Ko in IEEE Trans. Appl. Supercond. 21:1332–1335, 2011). Dielectric experiments are conducted on GFRP (glass fiber reinforced plastic) and insulation gases (SF6, CF4, and N2) with various pressures to establish experimental criteria for designing current lead parts for superconducting applications. It is found that the criteria for calculating electrical breakdown voltage at sparkover of GFRP and insulation gases conform to the mean electric field intensity and the maximum electric field intensity, respectively. Also, the criteria for calculating the electrical breakdown voltage at sparkover according to various conditions are derived. Finally, the conceptual dielectric design of current leads for a 154 kV superconducting apparatus by applying the presented criteria is performed considering various safety factors.  相似文献   

11.
Thin film transistors (TFTs) were fabricated on a glass substrate using zinc oxide material as a channel layer. The layers were grown by radio frequency magnetron sputtering method at a temperature of 100°C. The output characteristics of a TFT device showed that there is a reduction in drain current at increased drain-source voltage and gate-source voltage. This evidenced the existence of self-heating effect which may be due to increased donor type point defects. The electrical characteristics of a device show an improved intrinsic channel mobility of 4 cm2/Vs, threshold voltage of 12 V, sub-threshold swing of 1 V/decade, and very much decreased off current of the order 10?12 A.  相似文献   

12.
Farid U Khan  Izhar 《Sadhana》2016,41(4):397-405
This paper reports a suspended coil, electromagnetic acoustic energy harvester (AEH) for extracting acoustical energy. The developed AEH comprises Helmholtz resonator (HR), a wound coil bonded to a flexible membrane and a permanent magnet placed in a magnet holder. The harvester’s performance is analyzed under different sound pressure levels (SPLs) both in laboratory and in real environment. In laboratory, when connected to 50 Ω load resistance and subjected to an SPL of 100 dB, the AEH generated a peak load voltage of 198.7 mV at the resonant frequency of 319 Hz. When working under the optimum load resistance, the AEH generated an optimum load power of 789.65 µW. In real environment, the developed AEH produced a maximum voltage of 25 mV when exposed to the acoustic noise of a motorcycle and generated an optimum voltage of 60 mV when it is placed in the surroundings of a domestic electrical generator.  相似文献   

13.
Electrical trees are an aging mechanism most associated with partial discharge (PD) activities in crosslinked polyethylene (XLPE) insulation of high-voltage (HV) cables. Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material. Two-dimensional (2D) optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods. However, since electrical trees can emerge in different shapes such as bush-type or branch-type, treeing images are complicated to segment due to manifestation of convoluted tree branches, leading to a high misclassification rate during segmentation. Therefore, this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm (MSLTA) by integrating batch processing method. The proposed method, h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy. The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation. The treeing images are then sampled and binarized in pre-processing. In the next phase, segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration. Finally, the comparative investigation has been conducted using standard performance assessment metrics, including accuracy, sensitivity, specificity, Dice coefficient and Matthew’s correlation coefficient (MCC). Based on segmentation performance evaluation against several established segmentation methods, h-MSLTA achieved better results of 95.43% accuracy, 97.28% specificity, 69.43% sensitivity rate with 23.38% and 24.16% average improvement in Dice coefficient and MCC score respectively over the original algorithm. In addition, h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image. These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.  相似文献   

14.
Most modern extruded high voltage cables employ cross-linked polyethylene (XLPE) as the insulation material. XLPE has excellent thermo-mechanical properties, is relatively cheap and has a low dielectric loss, which make it an ideal material for this application. Unfortunately, XLPE is not easily recycled at the end of its lifetime leading to questions concerning its long-term sustainability. A previous investigation in this series considered the potential of a range of ethylene-based systems to provide suitable recyclable alternatives to XLPE. Whilst blending could allow systems having similar thermo-mechanical and electrical properties to XLPE to be designed, it was not possible to obtain better performance than XLPE using these systems. Polypropylene offers, potentially, a route to improved insulation systems by virtue of its higher melting point and excellent dielectric properties. However, traditional isotactic polypropylenes have always had the problem of being too brittle for inclusion into practical cable designs. Recently a broad range of propylene co-polymers having improved ductility have become available, which may prove more suitable. The current study compares traditional isotactic and syndiotactic polypropylenes to a range of commercially available propylene co-polymers and focuses on their morphology, thermal, thermo-mechanical and electrical properties. These parameters were then taken together to identify the most suitable candidate materials for future cable applications. The use of blending as a means to further optimise the various material properties was also explored.  相似文献   

15.
16.
This paper demonstrates a multi-source energy harvester that is able to utilize simultaneously both piezoelectric and pyroelectric effects in lead magnesium niobate-lead titanate (PMN-PT) single crystal. The paper presents a study of PMN-PT single crystal with a (67:33) composition grown in our laboratory via a vertical gradient freeze method without any flux. The performance of the piezoelectric and pyroelectric energy harvester using unimorph device structure was evaluated via modeling and experiment. The theoretical study was implemented based on a distributed parameter electromechanical model and the modelling procedure was approximated using finite element analysis to predict the electromechanical behavior of the harvester. The maximum power density at a resonance frequency of 50 Hz and optimum resistance of 2 MΩ was 16.7 nW/(g2 cm3) under a 1 g acceleration of vibration. The measured values of electrical output parameters were in good agreement with theoretical and modelling results using MATLAB and COMSOL Multiphysics, respectively. By using the pyroelectric effect along with the piezoelectric effect, the output voltage of the energy harvester was found to be enhanced at the optimum resistance and specific frequency values. It was noticed that the output voltage was increased monotonically with temperature-difference (ΔT) and reaches up to 180 % of its original value under temperature difference of 1.7 °C at a frequency value of 49 Hz.  相似文献   

17.
Fatigue tests on Cr-Mo steel quenched at 860°C and tempered at 580°C were carried out under the frequencies of 0.2, 2, and 20 Hz with specimens containing a small artificial hole. An additional test in which the test frequency was alternately switched between 0.02 and 2 Hz was carried out. Hydrogen charging to the specimens was carried out by an immersion method. The fatigue life of the hydrogen-charged specimens remarkably decreased in comparison with that of the uncharged specimens. The fatigue crack growth rate da/dN increased with decreasing the test frequency f. The acceleration of da/dN saturated at \({\Delta K\,<\,17\,{\rm MPa}\sqrt{m}}\) for f ≤ 2 Hz. The presence of the upper bound for the fatigue crack growth acceleration was found with respect to the effects of hydrogen and test frequency in a hydrogen environment. The test switching the frequency between 0.02 and 2 Hz resulted the difference in fatigue crack growth morphology which is presumed to be caused by the difference in hydrogen concentration in the vicinity of crack tip. The particular crack morphology under the low test frequency with hydrogen was the localization of the slip around the crack tip and the linearization of the crack growth path. The hydrogen-enhanced striation formation model which was proposed to explain the effect of hydrogen on the fatigue crack growth for an austenitic stainless steel and low carbon steel can be applied also to the quenched and tempered Cr-Mo steel in this study.  相似文献   

18.
高压直流电缆附件在电力系统运行中,由于复合绝缘电导率不匹配极易导致电场畸变引发绝缘故障。针对这一问题,采用直接共混法制备了不同掺杂浓度的纳米TiO2/液体硅橡胶(LSR)复合材料,并对其微观形貌和介电性能进行了测试研究。结果表明:纳米TiO2粒子在LSR基体中分散较均匀,随着TiO2掺杂含量的增加,纳米TiO2/LSR复合材料试样的相对介电常数和介质损耗因数增大。当纳米TiO2粒子添加量为4wt%时,纳米TiO2/LSR复合材料的电导率与电缆主绝缘交联聚乙烯(XLPE)的电导率近似相等,且随着电场强度的增大,两者的电导率变化趋势也基本一致。电声脉冲法(PEA)测量结果表明,添加4wt% TiO2的纳米TiO2/LSR复合材料内积聚的空间电荷最少。纳米TiO2粒子的掺杂,提高了TiO2/LSR复合材料电缆附件绝缘电导率对电场强度的响应依赖特性,使其能与XLPE绝缘电导率较好地匹配,同时一定程度地抑制了空间电荷的积累,有助于直流电缆附件内复合绝缘电场的均匀分布。   相似文献   

19.
A dipole probe is fabricated to manipulate millimeter- to submillimeter-sized objects. A tungsten needle, an alumina tube and a stainless tube are arranged concentrically in order inside the probe. The tip of the stainless tube is ground to form a needle. They are embedded in an epoxy resin and the tip of the probe is shaped hemispherically. The probe has two electrodes, a tungsten needle and a stainless steel needle, inside it. The probe can attract objects by gradient force like a bipolar electrostatic chuck. The attraction force is measured as a function of the applied voltage, and they are compared with those calculated by a 3D FEM. Both the experimental values and the calculated values are proportional to the square of the applied voltage. The determined values are, however, three times greater than those by the calculated values. The difference is ascribed to the incomplete shape of the probe model and the difference of dielectric constants of materials. The probe can attract both conductive gold particles and dielectric foam styrene particles. The probe is placed above the particle and a voltage supplier is turned on. The particle jumps up and adheres at the tip of the probe. The adhesive position is not on the center axis of the probe but the opposite side to the stainless needle against the center of the probe. The distances from the center of the probe are at a range of 0.4–1.05 mm for 20 experiments. The FEM calculation shows that maximum attraction force is for the particle placed at the opposite side to the stainless needle. Release is possible only by turning the voltage supplier off. The particle moves to the bottom of the probe, and falls after 1–2 s. The delay is due to the attenuation period of electrons accumulated at the surface of the probe.  相似文献   

20.
Anhydrous polycrystalline sodium molybdate (Na2MoO4) ceramics has been prepared by a solid-state reaction technique. The formation of the compound in cubic system is confirmed by a preliminary structural analysis using X-ray diffraction data. Energy dispersive spectrum analysis of Na2MoO4 has confirmed its chemical formula and composition. Spectroscopic studies of the compound have been carried by a vibration spectroscopy (Raman/FTIR) in order to understand its molecular structure at microscopic level. The complex impedance spectroscopy technique has been used to study the electrical properties of the material as a function of frequency (102–106 Hz) at different temperatures (23–450 °C), and also to investigate the fundamental mechanism involved in the material. Impedance analysis also indicates that below 300 °C, the material electrical conduction is related to the grain volume. Above 300 °C, the contribution of grain boundary is clearly evident. The electrical processes in the material are found to be temperature-dependent, and due to relaxation phenomena in it. A frequency dependent maximum of the imaginary electrical impedance is found to obey an Arrhenius law with activation energy of 1.07 eV. The frequency dependence of electrical conductivity spectra does follow the universal power law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号