首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photoaffinity labeling with [gamma-32P]8N3GTP (8-azidoguanosine triphosphate) was used to identify the guanine binding peptides of the GTT binding site within two types of glutamate dehydrogenase isoproteins (GDH I and GDH II) isolated from bovine brain. 8N3GTP, without photolysis, mimicked the inhibitory properties of GTP on GDH I and GDH II activities. Saturation of photoinsertion of GDH isoproteins revealed an apparent Kd of 8 microM (GDH I) and 24 microM (GDH II) for [gamma-32P]8N3GTP. Ion exchange and reversed-phase high-performance liquid chromatography (HPLC) were used to isolate photolabel-containing peptides generated with trypsin. This identified a portion of the guanine binding domain within the GTP binding site is the region containing the sequence I-S-G-A-S-E-X-D-I-V-H-S-A-L-A-Y-T-M E-R (GDH I) and I-S-G-A-S-E-X-D-I-V-H-S-G-L-A-Y-T-M-E-R (GDH II). The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as a photolabeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other GDH species known. Also, trypsin was unable to cleave the photolabeled peptide at this site. Photolabeling of these peptides was prevented by the presence of GTP during photolysis, while other nucleotides could not reduce the amount of photoinsertion as effectively as GTP. These results demonstrate selectivity of the photoprobe for the GTP binding site and suggest that the peptide identified using the photoprobe is located in the GTP binding domain of the brain GDH isoproteins.  相似文献   

2.
Two soluble forms of bovine brain glutamate dehydrogenase (GDH) isoproteins were inactivated by pyridoxal 5'-phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through Schiff's base formation with amino groups of the enzyme. Sodium borohydride reduction of the pyridoxal 5'-phosphate-inactivated GDH isoproteins produced a stable pyridoxyl enzyme derivative that could not be reactivated by dialysis. The pyridoxyl enzyme was studied through fluorescence spectroscopy. No substrates or coenzymes separately gave complete protection against pyridoxal 5'-phosphate. A combination of 10 mM 2-oxoglutarate with 2 mM NADH, however, gave complete protection against the inactivation. Tryptic peptides of the isoproteins, modified with and without protection, resulted in a selective modification of one lysine. In both GDH isoproteins, the sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other GDH species.  相似文献   

3.
Photoaffinity labeling with [2'-32P]2N3NADP+ and [32P]2N3NAD+ was used to identify two overlapping tryptic and chymotryptic generated peptides within the adenine binding domain of NADP(+)-dependent isocitrate dehydrogenase (IDH). Photolysis was required for insertion of radiolabel, and prior photolysis of photoprobes before addition of IDH prevented insertion. Photoincorportion of 2N3NAD+ inhibited the enzymatic activity of IDH. Photolabeling of IDH with both [32P]2N3NAD+ and [2'-32P]2N3-NADP+ showed saturation effects with apparent Kds of 20 and 14 microM (+/-12%), respectively. The efficiency of photoincorporation at saturation of binding sites was determined to be about 50%. Also, photolabeling was observed with [32P]8N3ATP and [32P]2N3ATP but with saturation effects observed at lower affinity. With all radiolabeled probes reduction of photoinsertion was effected best by the addition of NADP+ followed by NAD+ and then ATP, indicating that photoinsertion with all the probes was within the NADP+ binding site. Isolation of [32P]2N3NAD+ and [2'-32P]2N3NADP+ photolabeled peptides by use of immobilized boronate and immobilized Al3+ chromatography, respectively, followed by HPLC purification resulted in the identification of overlapping peptides corresponding to Ile244-Arg249 and Leu121-Arg133 (tryptic fragments) and Lys243-His248 and Leu121-His135 (chymotryptic fragments). Trp125 and Trp245 were identified as the sites of photoinsertion based on these residues not being detectable on sequencing, the lack of chymotryptic cleavage at these residues, and the decreased rate of trypsin digestion at nearby Lys243 and Lys127. Sequence analysis of [32P]8N3ATP and [32P]2N3ATP photolabeled peptides gave essentially the same peptide regions being photolabeled but at much lower efficiency, indicating that the effects of ATP on IDH activity are dependent on competition for the same site.  相似文献   

4.
5.
An NADPH-dependent succinic semialdehyde reductase from bovine brain was inactivated by pyridoxal 5'-phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After sodium borohydride reduction of the inactivated enzyme, it was observed that 1 mol phosphopyridoxyl residue was incorporated/mol enzyme monomer. The coenzyme, NADPH, protected the enzyme against inactivation by pyridoxal 5'-phosphate. After tryptic digestion of the enzyme modified with pyridoxal 5'-phosphate in the presence and absence of NADPH followed by [1H]NaBH4 reduction, a radioactive peptide absorbing at 310 nm was isolated by reverse-phase HPLC. The amino acid sequence of the peptide identified a portion of the pyridoxal-5'-phosphate-binding site as the region containing the sequence I-L-E-N-I-Q-V-F-X-K, where X indicates that the phenylthiohydantoin amino acid could not be assigned. The missing residue, however, can be designated as a phosphopyridoxyl lysine as interpreted from the result of amino acid composition of the peptide. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of pyridoxal 5'-phosphate to a specific lysyl residue at or near the coenzyme-binding site of the protein.  相似文献   

6.
The nucleotide sequence of a full-length cDNA encoding NAD(+)-malic enzyme from the parasitic nematode Ascaris suum was determined. The entire sequence of 2269 bases comprises a 5'-leader, a single open reading frame of 1851 bases, and the complete 3'-noncoding region of 340 bases. The first 12 amino acids of the translated sequence are hydrophobic, typical of mitochondrial translocation signals, and do not appear in the purified mature protein. The mature protein contains 605 amino acids and has a molecular mass of 68,478 Da. The amino acid sequences of tryptic peptides from the purified protein and also the N-terminal sequence show excellent correspondence with the translated nucleotide sequence. Comparison of the amino acid sequence of the ascarid protein with the human and rat liver NAD(+)-malic enzymes reveals highly conserved regions interrupted with long stretches of lesser homologous sequences. Structural motifs such as the putative nucleotide binding domains and also the malate binding site are clearly identified by alignment of the three protein sequences.  相似文献   

7.
Many Oriental people possess a liver mitochondrial aldehyde dehydrogenase where glutamate at position 487 has been replaced by a lysine, and they have very low levels of mitochondrial aldehyde dehydrogenase activity. To investigate the cause of the lack of activity of this aldehyde dehydrogenase, we mutated residue 487 of rat and human liver mitochondrial aldehyde dehydrogenase to a lysine and expressed the mutant and native enzyme forms in Escherichia coli. Both rat and human recombinant aldehyde dehydrogenases showed the same molecular and kinetic properties as the enzyme isolated from liver mitochondria. The E487K mutants were found to be active but possessed altered kinetic properties when compared to the glutamate enzyme. The Km for NAD+ at pH 7.4 increased more than 150-fold, whereas kcat decreased 2-10-fold with respect to the recombinant native enzymes. Detailed steady-state kinetic analysis showed that the binding of NAD+ to the mutant enzyme was impaired, and it could be calculated that this resulted in a decreased nucleophilicity of the active site cysteine residue. The rate-limiting step for the rat E487K mutant was also different from that of the recombinant rat liver aldehyde dehydrogenase in that no pre-steady-state burst of NADH formation was found with the mutant enzyme. Both the rat native enzyme and the E487K mutant oxidized chloroacetaldehyde twice as fast as acetaldehyde, indicating that the rate-limiting step was not hydride transfer or coenzyme dissociation but depended upon nucleophilic attack. Each enzyme form showed a 2-fold activation upon the addition of Mg2+ ions. Substituting a glutamine for the glutamate did not grossly affect the properties of the enzyme. Glutamate 487 may interact directly with the positive nicotinamide ring of NAD+ for the Ki of NADH was the same in the lysine enzyme as it was in the glutamate form. Because of the altered NAD+ binding properties and kcat of the E487K variant, it is assumed that people possessing this form will not have a functional mitochondrial aldehyde dehydrogenase.  相似文献   

8.
Analysis of the C-terminal cytosolic domain of human and mouse polycystin-1 has identified a number of conserved protein motifs, including a 20-amino-acid heterotrimeric G-protein activation sequence. A peptide specific for this sequence was synthesized and shown to activate purified bovine brain heterotrimeric Gi/Go in vitro. To test whether the C-terminal cytosolic domain of polycystin-1 stably binds G-proteins, GST-fusion constructs were used in pull-down and co-immunoprecipitation assays with purified bovine brain Gi/Go and rat brain lysates. This identified a 74-amino-acid minimal binding domain that includes the G-protein activation sequence. This region of polycystin-1, including the G-protein activation peptide and flanking amino acid sequences, is highly conserved in mouse, human, and puffer fish, lending further support to the functional importance of the minimal binding domain. These results suggest that polycystin-1 may function as a heterotrimeric G-protein coupled receptor.  相似文献   

9.
ADP-ribosylation is a reversible post-translational modification of proteins involving the addition of the ADP-ribose moiety of NAD to an acceptor protein or amino acid. NAD:arginine ADP-ribosyltransferase, purified from numerous animal tissues, catalyzes the transfer of ADP-ribose to an arginine residue in proteins. The reverse reaction, catalyzed by ADP-ribosylarginine hydrolase, removes ADP-ribose, regenerating free arginine. An ADP-ribosylarginine hydrolase, purified extensively from turkey erythrocytes, was a 39-kDa monomeric protein under denaturing and non-denaturing conditions, and was activated by Mg2+ and dithiothreitol. The ADP-ribose moiety was critical for substrate recognition; the enzyme hydrolyzed ADP-ribosylarginine and (2-phospho-ADP-ribosyl)arginine but not phosphoribosylarginine or ribosylarginine. The hydrolase cDNA was cloned from rat and subsequently from mouse and human brain. The rat hydrolase gene contained a 1086-base pair open reading frame, with deduced amino acid sequences identical to those obtained by amino terminal sequencing of the protein or of HPLC-purified tryptic peptides. Deduced amino acid sequences from the mouse and human hydrolase cDNAs were 94% and 83% identical, respectively to the rat. Anti-rat brain hydrolase polyclonal antibodies reacted with turkey erythrocyte, mouse and bovine brain hydrolase. The rat hydrolase, expressed in E. coli, demonstrated enhanced activity in the presence of Mg2+ and thiol, whereas the recombinant human hydrolase was stimulated by Mg2+ but was thiol-independent. In the rat and mouse enzymes, there are five cysteines in identical positions; four of the cysteines are conserved in the human hydrolase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Tau protein is a phosphorylated neuronal microtubule-associated protein. Tau protein is also present in the major pathological lesions of Alzheimer's disease in an insoluble hyperphosphorylated state as paired helical filaments (PHFs). We have investigated the phosphorylation state of control taus and a fragment of PHF-tau. Tau samples were digested with protease, separated by reversed-phase high-performance liquid chromatography, and analyzed by mass spectrometry and Edman microsequencing. The serine homologous with S404 of human tau 441 was phosphorylated on bovine and porcine tau and up to two phosphates were present on a peptide of amino acids 182-240 of bovine tau (193-251 of human tau 441). The serine within the KSPV motif was not phosphorylated on bovine or porcine tau. PHF-tau fragments, isolated from pronase-treated PHFs encompassed a 93-amino acid region within the microtubule binding domain. Enzymatic digestion and mass spectrometric analysis showed no phosphate was present and a second carboxyl terminus was identified at E380. Antibodies T3P and SMI34, which recognize PHF-tau and peptides phosphorylated at the sequence KSPV, both reacted with bovine and porcine tau even though the KSPV sequence was not phosphorylated. These data indicate that the 93-amino acid sequence of F5.5 tau from PHFs is not phosphorylated, and the serine equivalent to S404 of human tau is phosphorylated in bovine and porcine tau. Antibodies T3P and SMI34 react with phosphorylated epitopes that are not unique to PHF-tau and that are not necessarily at the KSPV site.  相似文献   

11.
Binding of urokinase-type plasminogen activator (uPA) to its cellular receptor (uPAR) renders the cell surface a favored site for plasminogen activation. Recently, a 15-mer peptide antagonist of the uPA-uPAR interaction, with an IC50 value of 10 nM, was identified using phage display technology [Goodson, R. J., Doyle, M. V., Kaufman, S. E., and Rosenberg, S. (1994) Proc. Natl. Acad. Sci. 91, 7129-7133]. In the present study, the molecular aspects of the interaction between this peptide and uPAR have been investigated. We have characterized the real-time receptor binding kinetics for the antagonist using surface plasmon resonance and identified critical residues by alanine replacements. The minimal peptide antagonist thus derived (SLNFSQYLWS) was rendered photoactivatable by replacing residues important for uPAR binding with photochemically active derivatives of phenylalanine containing either (trifluoromethyl)diazirine or benzophenone. These peptides incorporated covalently into purified soluble uPAR upon photoactivation, and this was inhibited by preincubation with receptor binding derivatives of uPA. The intact three-domain structure of uPAR was essential for efficient photoaffinity labeling. Proteolytic domain mapping using chymotrypsin revealed a specific labeling of both uPAR domain I and domains II + III dependent on the position of the photoprobe in the antagonist. On the basis of these studies, we propose the existence of a composite ligand binding site in uPAR combined of residues located in distinct structural domains. According to this model, a close spatial proximity between uPAR domain I and either domains II or III in intact uPAR is required for the assembly of this composite binding site. Since the receptor binding properties of the peptide antagonist closely mimic those of uPA itself, these two ligands presumably share coincident binding site in uPAR.  相似文献   

12.
Human brain homogenate proteins were analyzed for binding and processing activity in relation to brain beta-amyloid precursor protein (APP). The homogenate was purified by arginine-Sepharose 4B affinity chromatography, which traps proteins with affinity to certain groups of arginine residue, such as serine proteases and zymogens. A 69 kDa protein that masks epitope(s) of brain APP was found in a weakly bound fraction. The nature of the 69 kDa brain protein was identified as albumin by N-terminal amino acid sequencing and Western blot analysis using anti-human albumin antibody. Western blot analysis with domain-specific anti-APP antibodies revealed that the masking activity is complete for beta-amyloid epitope(s), but incomplete for cytoplasmic and extracellular domain epitopes, suggesting that the interaction site of the albumin is beta-amyloid itself. Therefore, it seems that brain albumin is not merely a carrier protein for beta-amyloid in cerebrospinal fluid, but also a modulator which interferes with processing of beta-amyloid precursor protein and its peptides.  相似文献   

13.
The primary structure of bovine liver UDP-glucose dehydrogenase (UDPGDH), a hexameric, NAD(+)-linked enzyme, has been determined at the protein level. The 52-kDa subunits are composed of 468 amino acid residues, with a free N-terminus and a Ser/Asn microhetergeneity at one position. The sequence shares 29.6% positional identity with GDP-mannose dehydrogenase from Pseudomonas, confirming a similarity earlier noted between active site peptides. This degree of similarity is comparable to the 31.1% identity vs. the UDPGDH from type A Streptococcus. Database searching also revealed similarities to a hypothetical sequence from Salmonella typhimurium and to "UDP-N-acetyl-mannosaminuronic acid dehydrogenase" from Escherichia coli. Pairwise identities between bovine UDPGDH and each of these sequences were all in the range of approximately 26-34%. Multiple alignment of all 5 sequences indicates common ancestry for these 4-electron-transferring enzymes. There are 27 strictly conserved residues, including a cysteine residue at position 275, earlier identified by chemical modification as the expected catalytic residue of the second half-reaction (conversion of UDP-aldehydoglucose to UDP-glucuronic acid), and 2 lysine residues, at positions 219 and 338, one of which may be the expected catalytic residue for the first half-reaction (conversion of UDP-glucose to UDP-aldehydoglucose). A GXGXXG pattern characteristic of the coenzyme-binding fold is found at positions 11-16, close to the N-terminus as with "short-chain" alcohol dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The amino acid sequence 256-275 of the human thyrotropin (TSH) receptor extracellular domain has previously been shown to participate in a high affinity TSH binding site by a synthetic peptide approach as well as by site-directed mutagenesis. To further investigate this binding site, we synthesized a series of peptides with alanine substitutions for each residue in the native sequence. Peptides were also synthesized containing truncations or deletions of the native sequence. Each peptide was tested for its ability to inhibit 125I-bTSH binding to porcine thyroid membrane preparations, and the concentration at which 50% inhibition of binding occurred was determined (EC50). Alanine substitution at residues Tyr258, Cys262, Cys263, Phe265, Lys266, Asn267, Lys269, Lys270, and Arg272 all resulted in statistically significant decreases in activity when compared to the native sequence (p < 0.05). Alanine substitution of the remaining residues did not alter their activity. Comparison of this sequence with the corresponding sequences of the remaining glycoprotein hormone receptors (human lutropin and human follitropin receptors) reveals that these residues lie within one of the most highly conserved regions of the extracellular domain. We conclude that 9 specific amino acids within the sequence 256-275 of hTSHr (-Y--CC-FKN-KK-R--) participate in the interaction of the hTSHr-extracellular domain with TSH. This may represent a site in which the nonconserved residues are involved in the binding of the beta-subunit and the conserved residues are involved in the binding of the common alpha-subunit or a region of the beta-subunit that is common to all glycoprotein hormones.  相似文献   

15.
The surface M protein of group A streptococci binds factor H, a regulatory protein of the alternative complement pathway, which may contribute to the antiphagocytic activity of the M molecules. To locate the factor H binding domain in the alpha-helical coiled-coil structure of the M molecule, the M protein was cleaved with pepsin at pH 5.8, which separates the molecule approximately in half. Western blot (immunoblot), amino acid sequence, and mass spectrometric analyses revealed that factor H bound to a 14.6-kDa C-terminal fragment of the M molecule. Competitive inhibition of factor H binding to the 14.6-kDa fragment with M protein peptides localized the binding site to amino acids 256 to 292. This segment is located within the surface-exposed region of the M6 protein, identified as the C-repeat region, whose sequence is conserved among heterologous M and M-like molecules. These studies also identified a second pepsin-susceptible site with the sequence ELAK located within the cell wall-associated region of the M molecule.  相似文献   

16.
Mitochondrial processing peptidase, a metalloendopeptidase consisting of alpha- and beta-subunits, specifically recognizes a large variety of mitochondrial precursor proteins and cleaves off N-terminal extension peptides. The enzyme requires the basic amino acid residues in the extension peptides for effective and specific cleavage. To elucidate the mechanism involved in the molecular recognition of substrate by the enzyme, several glutamates around the active site of the rat beta-subunit, which has a putative metal-binding motif, H56XXEH60, were mutated to alanines or aspartates, and effects on kinetic parameters, metal binding, and substrate binding of the enzyme were analyzed. None of mutant proteins analyzed was impaired in dimer formation with the alpha-subunit. Mutation of glutamates at positions 79, 129, and 136, in addition to an active-site glutamate at position 59, resulted in a marked decrease in cleavage efficiency. Together with sequence alignment data, glutamate 136 appears to be involved in metal binding. Glutamate 129 is mostly responsible for the catalysis, as there was a considerable decrease in kcat value by the mutation. Mutation of glutamate 79 led to decrease in kcat value and increase in Km values. Substrate binding experiments using an environmentally sensitive fluorescence probe attached to the peptide showed that the mutation caused a remarkable environmental change at the binding site to the N-terminal region of the substrate peptide and decreased binding of the peptide, thereby suggesting that glutamate 79 participates primarily in substrate binding. Thus, some glutamate residues required for substrate binding and cleavage activity have been identified.  相似文献   

17.
SH2 domains are small protein domains of approximately 100 amino acids that bind to phosphotyrosine (pY) in the context of a specific sequence surrounding the target pY. In general, the residues C-terminal to the pY of the binding target are considered most important for defining the binding specificity, and in particular the pY + 1 and pY + 3 residues (i.e., the first and third amino acids C-terminal to the pY). However, our previous studies with the SH2 domains of the protein tyrosine phosphatase SHP-2 [Huyer, G., Li, Z. M., Adam, M., Huckle, W. R., and Ramachandran, C. (1995) Biochemistry 34, 1040-1049] indicated important interactions with the pY - 2 residue as well. In the SH2 domains of SHP-2, the highly conserved alphaA2 Arg is replaced by Gly. A comparison of the published crystal structures of the Src SH2 domain and the N-terminal SH2 domain of SHP-2 complexed with high-affinity peptides suggested that the alphaA2 Gly of SHP-2 creates a gap which is filled by the side chain of the pY - 2 residue of the bound peptide. It was predicted that replacing this Gly with Arg would alter or eliminate the involvement of the pY - 2 residue in binding. The alphaA2 Gly --> Arg mutant was constructed, and indeed, this mutant no longer required residues N-terminal to the target pY for high-affinity binding, making its specificity more like that of other SH2 domains. The alphaA2 Gly is clearly involved in directing the unusual requirement for the pY - 2 residue in the binding sequence of this SH2 domain, which has important implications for its in vivo targeting and specificity.  相似文献   

18.
Previous studies have capitalized on ordered kinetic mechanisms in the design of biospecific affinity chromatographic methods for highly efficient purifications and mechanistic studies of enzymes. The most direct tactic has been the use of immobilised analogues of the following, usually enzyme-specific substrates, e.g., lactate/pyruvate in the case of lactate dehydrogenase for which NAD+ is the leading substrate. Such immobilised specific substrates are, however, often difficult or impossible to synthesise. The locking-on strategy reverses the tactic by using the more accessible immobilised leading substrate, immobilised NAD+, as adsorbent with soluble analogues of the enzyme-specific ligands (e.g., lactate in the case of lactate dehydrogenase) providing a substantial reinforcement of biospecific adsorption sufficient to effect adsorptive selection of an enzyme from a group of enzymes such as the NAD(+)-specific enzymes. The value of this approach is demonstrated using model studies with lactate dehydrogenase (LDH, EC 1.1.1.27), alcohol dehydrogenase (ADH, EC 1.1.1.1), glutamate dehydrogenase (GDH, EC 1.4.1.3) and malate dehydrogenase (MDH, EC 1.1.1.37). Purification of bovine liver GDH in high yield from crude extracts is described using the tactic.  相似文献   

19.
Nup475 is a nuclear zinc-binding protein of unknown function that is induced in mammalian cells by growth factor mitogens. Nup475 contains two tandemly repeated sequences YKTELCX8CX5CX3H (Cys3His repeats) that are thought to be zinc-bindin domains. Similar sequences have been found in a number of proteins from various species of eukaryotes. To determine the metal binding properties and secondary structure of the putative zinc-binding domains of Nup475, we have used synthetic or recombinant peptides that contain one or two domain sequences. The peptide with a single domain bound 1.0 +/- 0.1 equivalents of Co2+, and the peptide with two domains bound 1.7 +/- 0.4 equivalents of Co2+. Both peptides bound Co2+ and Zn2+ with affinities similar to those of classical zinc finger peptides. In each case, the Co2+ complex exhibited strong d-d transitions characteristic of tetrahedral coordination. For structural studies by nuclear magnetic resonance spectroscopy, we used a more soluble two-domain peptide that had a single amino acid substitution in a nonconserved amino acid residue in the second Cys3His repeat. The mutant peptide unexpectedly showed loss of one of its metal binding sites and displayed ordered structure for only the first Cys3His sequence. On the basis of the nuclear magnetic resonance data, we propose a structure for the Nup475 metal-binding domain in which the zinc ion is coordinated by the conserved cysteines and histidine, and the conserved YKTEL motif forms a parallel sheet-like structure with the C terminus of this domain. This structure is unlike that of any previously described class of metal binding domain.  相似文献   

20.
Using a rapid single-step affinity chromatography procedure we have isolated the unactivated estrogen receptor from bovine uterus. Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analyses for protein extracts recovered from affinity chromatography of receptor cytosols, either preincubated or untreated with estradiol, suggest a component structure for the intact oligomeric receptor which includes hsp90, hsp70, p59, a 40-kDa cyclophilin-related protein, and an uncharacterized 22-kDa protein species. We have chemically determined the amino acid sequences of eight peptides derived from the 40-kDa component and now report the cloning and primary sequence of a cDNA encoding this protein, which is designated estrogen receptor-binding cyclophilin (ERBC). Homology analyses confirm that ERBC is a new member of the cyclophilin family and contains a C-terminal domain with significant sequence homology to an internal region of p59, a binding protein for the immunosuppressant FK506 (FKBP59). This conserved region includes a 3-unit tetratricopeptide repeat domain bounded at the C terminus by a putative calmodulin binding site. We propose that the tetratricopeptide repeat domain mediates the protein interaction properties of ERBC and p59. Both immunophilins may have important roles in receptor assembly and may represent a new category of ligand- and calcium-dependent modulators of protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号