首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 101 毫秒
1.
辛宇  杨静  谢志强 《软件学报》2016,27(2):363-380
语义社会网络是一种由信息节点及社会关系构成的新型复杂网络,传统语义社会网络分析算法在进行社区挖掘时需要预先设定社区个数,且无法发现重叠社区.针对这一问题,提出一种面向语义社区发现的link-block算法.该算法首先以LDA模型为语义信息模型,创新性地建立了以link为核心的block区域LBT(link-block-topic)取样模型;其次,根据link-block语义分析结果,建立可度量link-block区域的语义链接权重方法,实现了语义信息的可度量化;最后,根据语义链接权重建立了以link-block为单位的聚类算法以及可评价语义社区的SQ模型,并通过实验分析,验证了该算法及SQ模型的有效性及可行性.  相似文献   

2.
辛宇  杨静  谢志强 《自动化学报》2014,40(10):2262-2275
语义社会网络(Semantic social network, SSN)是一种由信息节点及链接关系构成的新型复杂网络, 为此以节点邻接关系为挖掘对象的传统社会网络社区发现算法无法有效处理语义社会网络重叠社区发现问题. 由此提出标签传播的语义重叠社区发现算法, 该算法以标签传播算法(Latent Dirichlet allocation, LDA)模型为语义信息模型, 利用Gibbs取样法建立节点语义信息到语义空间的量化映射; 提出可度量节点间相似性的主成分 (Semantic coherent neighborhood propinquity, SCNP)模型和语义影响力(Semantic impact, SI)模型; 以SCNP作为标签传播的权重, 以SI 作为截断值的参数, 提出一种改进的Semantic-LPA (Semantic label propagation algorithm)算法; 提出可度量语义社区发现结果的语义模块度模型, 并通过实验分析, 验证了算法及语义模块度模型的有效性及可行性.  相似文献   

3.
基于局部语义聚类的语义重叠社区发现算法   总被引:2,自引:0,他引:2  
语义社会网络是一种包含信息节点及社会关系构成的新型复杂网络,因此以节点邻接关系为挖掘对象的传统社会网络社区发现算法无法有效处理语义社会网络重叠社区发现问题.针对这一问题,提出基于局部语义聚类的语义社会网络重叠社区发现算法,该算法:1)以LDA(latent Dirichlet allocation)模型为语义信息模型,利用Gibbs取样法建立节点语义信息到语义空间的量化映射;2)以节点间语义坐标的相对熵作为节点语义相似度的度量,建立节点相似度矩阵;3)根据社会网络的局部小世界特性,提出语义社会网络的局部社区结构S-fitness模型,并根据S-fitness模型建立了局部语义聚类算法(local semantic clusterm, LSC);4)提出可度量语义社区发现结果的语义模块度模型,并通过实验分析,验证了算法及语义模块度模型的有效性及可行性.  相似文献   

4.
语义社会网络是由信息节点及社会关系构成的一类新型复杂网络,因此语义社会网络重叠社区发现是传统社区发现研究的新方向.针对这一问题,提出基于随机游走的语义社会网络重叠社区发现算法,该算法首先以LDA(latent Dirichlet allocation)算法为基础建立语义空间,实现节点语义信息到语义空间的量化映射;其次,以语义空间中节点信息熵作为节点语义信息比重,以节点的度分布比率作为节点关系比重,建立节点语义影响力模型及语义社会网络的加权邻接矩阵;再次,以语义影响力模型和加权邻接矩阵为参数,提出一种改进的语义社会网络重叠社区发现的随机游走策略,并提出可度量语义社区发现结果的语义模块度模型;最后,通过实验分析,验证了所提出的算法及语义模块度模型的有效性和可行性.  相似文献   

5.
基于节点的中心度和节点对社区的适应度,提出了一种新的重叠社区发现算法。该算法以中心度很大的节点作为初始社区,然后访问社区的邻居节点,把对社区适应度最大的节点加入到社区。如果节点对多个社区都具有很大的适应度,则这些节点归属于多个社区。考虑到社区之间的重叠性,将社区相似度很大的社区合并为一个社区。将该算法应用到Zachary空手道俱乐部网络和海豚社会网络中,实验表明该算法能够很好地划分出网络中的重叠社区。  相似文献   

6.
针对社会网络中存在较多以度中心节点为中心并且具有多社区重叠节点的网络社区结构,提出了一种面向度中心性及重叠网络社区的两阶段发现算法。第一阶段发现初始社区:选取度最大的Top-k个节点作为候选中心节点,并将每个节点与其邻居节点形成候选初始社区,其中如果某候选社区与已形成的初始社区的重叠度低于阈值,则形成一个新的初始社区;第二阶段调整社区划分:通过偏离度机制进行调整,将偏离度最大值对应的节点划分到连接紧密的相应社区内,形成最终社区划分。实验表明,该方法不仅能够揭示网络中以某个节点为中心的密集的社区结构,还能有效处理初始社区不同程度的重叠问题。相比现有算法,所提方法对预先输入的候选初始社区数k值不敏感,并具有较高的准确性和灵活性。  相似文献   

7.
一种重叠社区发现的启发式算法   总被引:1,自引:1,他引:1       下载免费PDF全文
提出了一种重叠社区发现的启发式算法。该算法基于局部贡献度的思想,以度最大的节点作为初始社区,逐步把对社区贡献最大的邻节点加入社区;同时考虑了社区的重叠性,若存在对多个社区贡献都很大的边界节点,则把边界节点同时加入到这些社区中。最后利用重叠系数对所划分的社区进行调整,使社区结构更加合理。对两个经典的社会网络Zachary和American College Football进行了实验测试,实验结果表明:该算法能快速准确地划分出社区,并能挖掘出社区间的边界节点。  相似文献   

8.
传统的重叠社区发现算法SLPA虽然具有时间复杂度和性能上的优势,但标签传播算法内在的随机策略使得算法结果并不稳定。针对SLPA的缺点,提出一种高效稳定的重叠社区发现算法L-SLPA。先对网络进行非重叠划分,减少不同标签分配的数量,同时加入边界节点的考虑进行剪枝,以提高运行速度。实验结果表明,相比于SLPA,该算法在降低运行时间和随机性的同时保证了结果的准确性。  相似文献   

9.
杜航原  裴希亚  王文剑 《计算机应用》2019,39(11):3151-3157
针对现实世界的网络节点中包含大量属性信息并且社区之间呈现出重叠特性的问题,提出了一种面向属性网络的重叠社区发现算法。融合网络的拓扑结构和节点属性定义了节点的密集度和间隔度,分别用于描述社区内部连接紧密和外部连接松散的特点。基于密度峰值聚类的思想搜索局部密度中心作为社区中心,在此基础上给出了非中心节点关于各个社区的隶属度的迭代计算方法,实现了重叠社区的划分。在真实数据集上进行了仿真实验,实验结果表明所提算法相对于LINK、COPRA和DPSCD能获得更好的社区划分结果。  相似文献   

10.
挖掘复杂网络的重叠社区结构对研究复杂系统具有重要的理论和实践意义。提出一种基于局部扩展优化的重叠社区识别算法。 首先基于网络节点的聚集系数筛选种子节点,选取不相关的、局部聚集系数大的种子作为初始社区;然后采用贪心策略扩展初始社区,得到局部连接紧密的自然社区;最后检测并合并相似的社区,获得高覆盖率的重叠社区结构。在人工生成网络和真实网络数据集上的实验结果表明,与现有的基于局部扩展的代表性重叠社区发现算法相比,所提算法能在稀疏程度不同的网络上发现更高质量的重叠社区。  相似文献   

11.
基于搜索密度峰值的聚类思想,设计了一种网络节点的中心性度量模型,并提出了一种重叠社区发现算法.首先,定义了网络节点的内聚度和分离度,分别用于描述网络社区内部连接稠密和外部连接稀疏的结构特征,在此基础上计算节点的中心性度量表达节点对社区结构的影响力.接着,利用3δ法则选择中心度异常大的节点作为社区中心.以隶属度表达社区间的重叠特性,并给出了非中心节点的隶属度迭代计算方法,将各节点分配到其可能隶属的网络社区,以实现重叠社区划分.最后,利用人工网络和真实网络对提出的重叠社区发现算法进行验证,实验结果表明:该算法在社区发现质量和计算效率方面都优于许多已有重叠社区发现算法.  相似文献   

12.
In this paper,we propose a balanced multi-label propagation algorithm(BMLPA) for overlapping community detection in social networks.As well as its fast speed,another important advantage of our method is good stability,which other multi-label propagation algorithms,such as COPRA,lack.In BMLPA,we propose a new update strategy,which requires that community identifiers of one vertex should have balanced belonging coefficients.The advantage of this strategy is that it allows vertices to belong to any number of communities without a global limit on the largest number of community memberships,which is needed for COPRA.Also,we propose a fast method to generate rough cores,which can be used to initialize labels for multi-label propagation algorithms,and are able to improve the quality and stability of results.Experimental results on synthetic and real social networks show that BMLPA is very efficient and effective for uncovering overlapping communities.  相似文献   

13.
随着互联网的不断发展,大多数社会网络已逐渐显示出动态特性,动态社会网络社团分析对理解现实生活中社会网络结构和功能具有非常重要的意义.针对动态社会网络中的社团发现问题,提出一种基于隐Markov模型(hidden Markov model, HMM)的HMM_DC算法.该算法考虑到社会网络的动态特性,结合历史信息,将社团发现转化为求解隐马尔可夫模型中的最优状态序列问题,将网络中的社团结构和节点信息分别采用状态链和观察链表示,在无须指定额外参数的情况下实现动态网络的社团结构发现.最后,利用该算法和其他算法对VAST数据集、ENRON数据集和Facebook social network数据集进行实验仿真.仿真结果表明:该算法能够快速、准确地发现真实动态网络中的社团,其模块度Q值和互信息NMI值有很大提升.  相似文献   

14.
为了能够更加有效地发现社会网络中具有重叠性的社区结构,提出一种基于链接密度聚类的重叠社区发现算法DBLINK.该算法首先以网络中的边集为对象,将其划分为若干个互不相连的链接社区,再将所得到的链接社区转化为最终的节点社区,隶属于不同链接社区边的交点即为网络中的重叠节点.由于DBLINK采用基于密度的算法对边集进行聚类,将不满足一定条件的边孤立出来,使其不隶属于任何链接社区,因此可以避免社区结构过度重叠的现象发生,从而提高了重叠社区发现的质量.实验结果表明,DBLINK不仅具有较好的时间效率,而且在社区发现的质量方面也优于其他几种代表性的重叠社区发现算法.  相似文献   

15.
辛宇  谢志强  杨静 《自动化学报》2015,41(10):1693-1710
语义社会网络(Semantic social network, SSN)是一种由信息节点及社会关系构成的复杂网络, 也是语义信息时代社会网络技术研究的热点, 相较于传统社会网络更具实用价值. 其研究内容包含了社会网络的语义分析及社会关系分析, 因此, 语义社会网络的社区挖掘建模具有一定的复杂性. 在语义社会网络的社区挖掘研究方面, 本文分析了当前基于话题概率模型的语义社区发现方法, 并在综述其内容的同时总结了各方法的优缺点, 为后续研究提供了理论基础. 在语义社会网络社区挖掘结果的评判方面, 本文归纳了相关的评价模型, 并通过实验分析对比了各模型对拓扑相关性和语义相关性的倾向性.  相似文献   

16.
设计了一种基于主题与连接的局部社 区划分算法。该算法结合节点的主题相似度和连接相似度,综合计算节点间的相似度。同时 算法采用局部思想,避免了寻找初始的中心节点。此外,该算法引入了局部模块度作为社区 划分的结束判断条件。该算法被应用到参与“海地地震”相关话题讨论的Twitter微博用户 数据集上,并与单纯基于链接、单纯基于主题以及基于主题和链接的社区划分算法在同样数 据集的划分结果进行对比,结果表明:从纯度和熵的评估角度看,本文算法更具优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号