共查询到19条相似文献,搜索用时 79 毫秒
1.
基于Matlab神经网络工具箱的电力负荷组合预测模型 总被引:3,自引:0,他引:3
在电力系统负荷预测中,组合预测是一种有效的方法。该方法通常是采用对单个预测模型进行加权处理,要求参加组合预测的模型误差能保持稳定,但电力负荷预测结果的误差往往是非均匀性的,针对上述做法存在问题,提出了基于人工神经网络的组合预测模型,利用人工神经网络对复杂非线性系统的拟合能力,通过网络训练自适应地调整各种预测模型的权重,同时,为了避免用常规语言建立人工神经网络负荷预测模型存在的模型结构复杂,训练时间长等缺点,利用Matlab神经网络工具箱建立组合预测模型,该模型不仅编程简单,而且收敛速度快,算例表明了该模型的实用性和有效性。 相似文献
2.
3.
4.
在长沙经济发展预测的基础上,采用回归分析法、趋势外推法、灰色预测方法和弹性系数法等多种方法预测长沙城区2005-2020年的负荷需求,并结合这些方法,提出了基于误差权重因子的多种方法组合预测的思路,对长沙市的长期负荷需求进行了优化组合预测.对预测结果的分析表明,该预测方法是合理、有效的. 相似文献
5.
6.
7.
8.
针对BP神经网络、RBF神经网络和粒子群BP神经网络在风电场风速预测中存在的问题,提出一种基于遗传算法优化神经网络的风速组合预测模型.该模型为单输出的3层前馈网络,将3种神经网络的预测结果与预测结果平均值作为神经网络的输入,将实际风速值作为神经网络输出,使学习后的网络具有预测能力.该模型能降低单一模型的预测风险,提高预... 相似文献
9.
在分析了某地区日平均负荷曲线的年周期性、周周期性、日周期性的基础上提出了每日24个整点负荷值的分段预测模型。根据该模型建立相应的RBF神经网络进行预测。并将预测结果与实际负荷值、由传统的BP网络模型得到的结果分别进行了对比分析,表明这种模型结合RBF神经网络的预测效果具有较高的精度,具备了一定的实用价值。 相似文献
10.
在分析了某地区日平均负荷曲线的年周期性、周周期性、日周期性的基础上提出了每日24个整点负荷值的分段预测模型.根据该模型建立相应的RBF神经网络进行预测.并将预测结果与实际负荷值、由传统的BP网络模型得到的结果分别进行了对比分析,表明这种模型结合RBF神经网络的预测效果具有较高的精度,具备了一定的实用价值. 相似文献
11.
基于灰色预测和神经网络的电力系统负荷预测 总被引:26,自引:12,他引:26
负荷是电力系统运行和规划的依据,准确的负荷预测有利于提高电力系统运行的经济性和可靠性。章提出了一种基于灰色预测和神经网络组合的电力系统负荷预测方法。在灰色预测中通过对历史数据作不同的取舍并经累加生成后建立不同的模型;对于灰色预测的不同结果再使用人工神经网络进行组合。具体方法是:神经网络的输入为各种灰色模型(GM)的预测,神经网络的输出为组合预测的结果。学习样本选择与预测量量近的n个已知值,学习方法使用改进的BP算法。所提方法综合了GM预测所需原始数据少、方法简单、而神经网络具有非线性的拟合能力的特点,提高了预测精度。算例表明了所提方法是可行的和有效的。 相似文献
12.
13.
14.
电力系统负荷预报的神经网络LBP算法 总被引:5,自引:0,他引:5
本文提出了一种能够反映工作日电力负荷波动性并可同时进行假日负荷预报的神经网络算法。该算法在一个神经网络中构造多个相互关联的子网络,将一周7日根据负荷特点分为四类特征日期,通过解码器根据输入的日期特征量激活对应的子网络,对基训练并作出预报。通过对实际系统的实验表明,该算法具有较高的预报精度。 相似文献
15.
应用人工神经网络进行短期负荷预测 总被引:11,自引:5,他引:11
本文提出了一种应用人工神经网络进行电力系统短期负荷预测的方法。负荷按照每周各日进行分类,共七种模式,学习样本选取每周中的相同类型日。为了提高预测精度,对原始数据中的伪数据进行清除,对于那些可以预料到的随机干扰,应用专家系统原理予以处理。通过对银川供电局负荷的实际预测,表明本文所提供方法可以实际应用。 相似文献
16.
17.
一种简化的电力系统负荷线性组合预测法 总被引:14,自引:6,他引:14
负荷是电力系统运行和规划的依据,精确的预测可提高系统运行的可靠性和经济性。作者将电力系统负荷预测的三种主要方法,即外推法、灰色预测法和人工神经网络法结合起来,建立了一种线性组合预测模型。在组合模型的权重系数求解中,首先对目标函数和等式约束使用拉格朗日乘子法来求解权重系数。当出现小子零的系数时,改为只使用误差矩阵的对角元素来计算,这种近似对预测精度影响较小,但简化了计算,且保证了组合系数大于零的条件。由于组合模型的总平均误差要小于各单一预测方法的平均误差,这就提高了预测精度,尤其组合模型的最大预测误差要小于单一模型的最大预测误差,从而降低了预测的风险性,实例证明这种组合模型具有较好的实用性。 相似文献
18.
基于模糊聚类的神经网络短期负荷预测方法 总被引:10,自引:12,他引:10
针对电力负荷的特点,综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,提出了一种新的短期负荷预测方法。通过模糊聚类选取学习样本,采用反向传播算法,对24点每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,在负荷平稳的季节和负荷波动较大的季节都具有较好的预测精度。 相似文献