首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含碳纳米管微波吸收材料的制备及其微波吸收性能研究   总被引:23,自引:0,他引:23  
用竖式炉流动法,以二茂铁为催化剂,噻吩为助催化剂,苯为碳源通过催化裂解反应制备了碳纳米管,碳纳米管的外径为20-50nm,内径10-30nm,长度50-1000μm.分别以碳纳米管、羰基铁粉、碳纳米管与羰基铁粉的混合物为吸收剂制备了微波吸收材料,研究了上述三种微波吸收材料在2-18GHz的吸波性能,与纯碳纳米管和纯羰基铁粉微波吸收材料相比, 碳纳米管与羰基铁粉复合微波吸收材料在2-18GHz的吸收峰明显向低频移动.在含碳纳米管的微波吸收材料中,碳纳米管作为偶极子在交变电场的作用下,产生极化电流,电磁波的能量转换为其他形式的能量,瑞利散射效应和界面极化也是含碳纳米管微波吸收材料的主要吸波机理.  相似文献   

2.
稻壳基活性炭的制备及其CO2吸附性能   总被引:1,自引:0,他引:1  
通过探究不同的实验条件对所制备的活性炭性能的影响,确定了稻壳活性炭的最佳制备工艺条件为炭碱比(PAM)1:2、活化温度800℃、活化时间30 min.研究活性炭对CO2的吸附特性表明活性炭对CO2的吸附以物理吸附为主.X射线光电子能谱分析(XPS)、微观形貌观察及红外光谱分析表明K O H具有优异的造孔能力,可有效去除...  相似文献   

3.
以木屑为炭源,钢渣为活性填料,采用磷酸活化法制备复合活性炭用于降解甲醛。依据GB 18580—2017对复合活性炭的降解甲醛性能进行分析。考察了钢渣掺量、活化温度、浸渍比对复合活性炭降解甲醛性能的影响。采用元素分析仪和X射线荧光光谱仪(XRF)对原料化学成分进行测试与分析,采用比表面积及孔径测定仪(BET)对孔结构进行测试与分析,采用扫描电子显微镜(SEM)对微观结构进行测试与分析,以揭示钢渣与木屑复合制备活性炭的协同作用和降解甲醛机理。结果表明,随着钢渣掺量增加、活化温度升高、浸渍比增加,钢渣/木屑复合活性炭的降解甲醛性能均呈现先提高后降低的趋势,其最优制备条件:钢渣掺量为25%、活化温度为450℃、浸渍比为1.5,经2 h后的甲醛降解率为40.7%。磷酸活化制备钢渣/木屑复合活性炭可形成大量孔隙结构,层状结构清晰,钢渣较好地包裹在活性炭多孔结构中,掺入一定比例钢渣能够形成以微孔为主的多孔结构,提高微孔率,为吸附甲醛提供更多的吸附位点,有利于提高降解甲醛性能。  相似文献   

4.
本文首先概述了石墨烯独特的物理结构和优异的力学、热学、电磁学性能,然后综述了石墨烯基磁性纳米复合材料的制备方法,并分析了其微波吸收机理,最后结合国内外研究现状展望了石墨烯基磁性纳米复合材料制备与微波吸收性能研究的发展方向,指出揭示复合材料的界面结合机制,调控复合材料的微观形貌,探索石墨烯与磁性纳米粒子微波吸收的协同效应将成为今后研究的重点和热点。  相似文献   

5.
本文采用原位聚合法以氯化镍和苯胺为原料制备了镍@聚苯胺(Ni@PANI)纳米复合材料,研究了该纳米复合材料在2~18GHz频段内的微波吸收性能,在14GHz时测得最大反射损耗为-35dB,吸波频带宽度约4GHz,这使镍@聚苯胺纳米复合材料优于单一的聚苯胺材料和镍离子掺杂的聚苯胺材料。对其介电常数、磁导率以及界面极化情况的研究结果表明镍@聚苯胺纳米复合材料的优良的吸波性能来自于其同时具有介电损耗和磁损耗,以及界面极化增强。  相似文献   

6.
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。  相似文献   

7.
采用聚乙二醇凝胶法制备了M-型钡铁氧体复合氧化物纳米材料,并将其与传统的微波吸收剂铁粉结合起来,制成双层复合的吸波涂层,进行测试,得到性能良好的微波吸收材料.在总结实验事实的基础上,对纳米复合材料的吸波机理进行了探讨.  相似文献   

8.
为了解决无线电通信技术高速发展带来的日益严重的电磁污染和干扰,电磁波吸收材料的研究变得极为重要。制备了羰基铁粉分散在不同基质(石蜡,环氧树脂和有机硅环氧树脂)的复合材料的样品。在3种不同基质样品(羰基铁粉体积分数40%)中,以有机硅环氧树脂为基质样品的反射损耗最大,相对带宽最大,所以把有机硅环氧树脂选为最优基质,并且制备了不同体积分数的羰基铁/有机硅环氧树脂复合材料,研究了它们的电磁性质和反射损耗性质。其中体积分数为50%的样品通过调节样品厚度,反射损耗可在稍低频范围(1~3GHz)达到-10dB(90%的吸收率)。  相似文献   

9.
由于具有很大的吸附容量,多孔炭材料是优良的吸附剂。笔者试图比较海枣核分别经CO2活化和磷酸活化所制活性炭的结构和吸附性能。活化过程和工艺条件对炭的物理化学性质影响较大,根据文献报道的结果选取了优化的工艺参数。基于氮气吸附等温线、SEM、FT-IR等分析结果,评估了活性炭的结构特征,吸附性能则由亚甲蓝吸附值表示。CO2活化得到了微孔活性炭,产率为44%、BET比表面积是666 m2·g-1;磷酸活化得到了产率为14.8%的中孔活性炭,BET比表面积为725 m2·g-1。CO2活化活性炭的平均孔径是1.51 nm,磷酸活化活性炭的则为2.91 nm。活性炭的亚甲蓝吸附等温线分别用Langmuir等温线和Freundlich等温线进行了验证,在优化工艺条件下制备的CO2活化炭和磷酸活化炭的亚甲蓝w单分子吸附容量分别为110 mg·g-1和345 mg·g-1。然而,磷酸活化产生的亚甲蓝吸附值最高达455 mg·g-1。  相似文献   

10.
用竖式炉流动法,以二茂铁为催化剂,噻吩为助催化剂,苯为碳源通过催化裂解反应在1100~1200℃制备了直线形碳纳米管,外径为20~50 nm,内径10~30 nm,长度50~1000 μm。用化学镀工艺在碳纳米管表面均匀包覆了Ni-P和Ni-N合金,研究了它们的磁性能及其环氧树脂基复合材料在2~18 GHz的微波吸收性能。与纯碳纳米管相比,镀Ni-P合金碳纳米管复合材料的吸收峰向高频移动,镀Ni-P和Ni-N合金碳纳米管经热处理后,复合材料的吸收峰向低频移动。镀Ni-P合金碳纳米管以及镀Ni-P和Ni-N合金经热处理碳纳米管的矫顽力分别为304.34 Oe、 81.65 Oe、 183.85 Oe。随着矫顽力的增加,在2~18 GHz,复合材料的微波吸收峰向高频移动。在复合材料中,碳纳米管以及镀Ni-P和Ni-N合金的碳纳米管作为偶极子吸收微波。   相似文献   

11.
核壳型铁钴复合材料的制备及其微波吸收性能的研究   总被引:8,自引:2,他引:8  
刘飚  官建国  王琦  张清杰 《功能材料》2005,36(1):133-135
采用多元醇还原工艺和自组装技术,通过在微米级Fe粉表面包覆纳米Co粒子,制备了一种具有核壳结构的复合磁性微球,表征了它们的相组成结构,测试了它们的微波电磁参数,研究了它们的微波吸收性能。结果表明:用该法制备的核壳型Fe/Co复合材料能够实现表面包覆致密,将其作为微波吸收剂,可以改善传统羰基铁粉吸收剂的频散特性,可使吸收量大于8dB的频带宽度达到7GHz。  相似文献   

12.
以茶籽壳为原料,以K2CO3作为活化剂,制备了新型活性炭。用氮气吸脱附法对活性炭的孔结构进行了分析。以活性炭为电极材料,6mol/L KOH溶液为电解液组装成超级电容器,利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能。结果表明,活化后的茶籽壳炭,其比表面积高达1272m2/g,比电容高达150F/g,研究表明茶籽壳活性炭适用于超级电容器的电极活性材料。  相似文献   

13.
用KOH活化法制备辣椒秸秆生物质活性炭(AC),对辣椒秸秆进行资源化再利用。确定了AC的最佳制备条件,并对材料的结构及理化性能进行表征。结果表明,KOH活化法制备AC最佳条件为:活化温度为800℃、活化时间为100min、炭剂比为3、浸渍时间为20h。在此条件下AC的碘吸附值为1348.44mg/g,亚甲基蓝吸附值为19.0mL/0.1g,比表面积达1761.16m~2/g,含有羧基、酚、醚基、胺基等亲水性基团,为微孔型活性炭。KOH活化法所制备的AC具有良好的吸附性能,为辣椒秸秆的资源化利用提供了参考数据。  相似文献   

14.
张小燕  唐小真 《功能材料》2013,(20):2963-2966
在惰性气氛下对磁性聚膦腈纳米管进行高温碳化,制备了新型的电磁损耗型碳基复合吸波材料。在磁场中检验了磁性聚膦腈纳米管碳化材料的磁响应性,通过四探针法测量了其电阻率,采用同轴传输反射法测定了电磁参数,并研究了该复合材料的微波吸收性能。研究结果表明,合成的磁性聚膦腈纳米管碳化材料在磁场中沿磁场方向作规则的定向排列,具有很好的磁响应性;电阻率为7.88(Ω·cm),是一种半导体材料;在测试频率范围2~18GHz内,磁性聚膦腈纳米管碳化材料同时存在一定的介电损耗和磁损耗,是一种磁损耗型和介电损耗型相结合的复合吸波材料;在14GHz附近存在最大反射损耗-14dB,并且显示了一定的宽频吸收特性。  相似文献   

15.
采用热压法制备了羰基铁/聚苯乙烯复合材料。复合材料的结构、形貌和电磁性能分别采用X射线衍射仪(XRD)、扫描电镜(SEM)和HP8510网络分析仪进行了研究。结果表明,随着羰基铁粉含量的增加,羰基铁/聚苯乙烯复合材料的复介电常数的实部ε′和虚部ε″、复磁导率的实部μ′和虚部μ″都呈现逐渐增大的趋势。羰基铁粉含量为75%(质量分数)的羰基铁/聚苯乙烯复合材料具有最好的电磁波吸收性能,其最小反射率在14GHz为-15dB,-10dB带宽达4.1GHz。  相似文献   

16.
用溶胶-凝胶法制备锰锌掺杂Z型钡钴铁氧体Ba3(MnZn)xCo2(1-x)Fe24O41(x=0.0、0.1、0.2、0.3、0.4、0.5)样品。用XRD和SEM对样品的晶体结构、颗粒形貌进行表征,用微波矢量网络分析仪测试该样品在2~18GHz微波频率范围的复介电常数、复磁导率,根据测量数据计算电磁损耗角正切及反射率,探讨该材料的微波吸收性能与电磁损耗机理。结果表明样品为Z型六角铁氧体晶体结构,颗粒呈六角片状形貌;当样品厚度为2.2mm、x=0.4时,在频率3.9GHz处吸收峰值为38.5dB,10dB以上频带宽度为3.8GHz;该材料能在1~5.8GHz微波低频范围实现有效吸收,其微波吸收兼具磁损耗和介电损耗,但磁损耗更为显著。  相似文献   

17.
解帅  冀志江  水中和  侯国艳  李彬  王静 《材料导报》2018,32(18):3123-3127, 3134
采用浸渍工艺在三维织物表面包覆炭黑,并将其与石膏复合制备石膏基微波吸收材料。利用弓形反射法测试了该复合材料在2~18GHz内的吸波性能,结果表明吸波性能随炭黑含量的增加而增强,三维织物的最佳厚度为6mm。三维织物厚度为6mm、乙炔炭黑含量为24%的复合材料在2~18GHz内对电磁波的反射损耗均低于-5dB,最低反射损耗可达-28.3dB。三维织物的特殊结构不仅能够有效改善材料的阻抗匹配,还能够增加材料的电磁波损耗路径,从而达到增强损耗能力、拓宽吸波频宽的目的。此外,三维织物还能够明显增强石膏基材料的抗折性能。  相似文献   

18.
以玉米秸秆作为生物质活性炭的原材料,CO2作为活化介质,分别以KOH、HNO3和CH3COOH作活化剂,在800℃下一步法制备出玉米秸秆活性炭,并针对部分样品分别使用KOH、HNO3和CH3COOH进行化学活化。分别考察CO2活化时间、CO2活化剂浓度、化学活化种类及后续热处理工艺对样品吸附CO2的性能影响。结果表明,化学活化过程可拓展活性炭的空隙结构,显著提高其对CO2的吸附。在最优工艺下(4 mol/L HNO3活化+100℃水浴加热1 h+600℃热处理),活性炭的比表面积达639.8 m2/g,其CO2捕集效率为7.33%,高于市场商业用活性炭的6.55%。同时,考察活性炭微孔和中孔对CO2吸附的影响规律,并采用Bangham动力学模型探讨样品的吸附性能。  相似文献   

19.
王英伍  杨皓  宁平  李凯  李山  黄彬 《材料导报》2017,31(15):50-59
从污泥基活性炭的制备及其在水和大气环境领域的应用两个部分进行了综述。主要总结了3种传统制备方法的原理;同时,对比了7种不同制备方法的优缺点和主要用途,汇总了通过添加农作物秸秆和矿物来提升污泥活性炭性质的相关研究。污泥基活性炭在环境领域的应用主要包括其对废水中有机染料、有机药物、小分子有机化合物和重金属的吸附以及其对硫化氢等工业废气和甲醛等室内废气的净化。另外,分别举例说明了不同来源污泥基活性炭的用途和性能。最后,总结分析了污泥基活性炭在研究中存在的问题以及今后的主要发展方向。  相似文献   

20.
微波吸收材料是指将投射至材料表面的电磁波能量转变为热能等其他类型的能量,从而实现电磁波的衰减和损耗的一类功能材料。随着抗磁干扰、辐射防护和军用隐身的现实需求不断增加,电磁波吸收材料不断向材料复合化、结构多样化的方向发展。并且随着信息技术的不断发展,以有限元分析、第一性原理计算为代表的材料计算科学,已广泛应用于微波吸收材料成分结构设计中,是实现材料可复合、可分析、可控制的重要手段。本文在综述阻抗匹配、电磁衰减等电磁波吸收基本原理与重要方程的基础上,论述了材料结构成分设计理论与计算机辅助方法,并根据研究现状对微波吸收复合材料进行分类,介绍了各体系复合材料的结构成分设计特点,分析了目前研究存在的问题,展望了未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号