首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Robots and software have been significantly improving our daily lives by rendering us much convenience. And 3D printing is a typical example, for it is going to usher in a new era of localized manufacturing that is actually based on digital fabrication by layer-by-layer deposition in three-dimensional space. In terms of food industry, the revolution that three-dimensional printing technologies is bringing to food manufacturing is convenience of low-cost customized fabrication and even precise nutrition control. This paper is aimed to give a brief introduction of recent development of food printing and material property of food ingredients that can be used to design the 3D food matrix and investigate the relationship between process parameters and resulting printed food properties in order to establish a food manufacturing process with this new food production approach.  相似文献   

2.
Three-dimensional food printing (3DFP) uses additive manufacturing concepts to fabricate customized designed products with food ingredients in powder, liquid, dough, or paste presentations. In some cases, it uses additives, such as hydrocolloids, starch, enzymes, and antibrowning agents. Chocolate, cheese, sugar, and starch-based materials are among the most used ingredients for 3DFP, and there is a broad and growing interest in meat-, fruit-, vegetable-, insect-, and seaweed-based alternative raw materials. Here, we reviewed the most recent published information related to 3DFP for novel uses, including personalized nutrition and health-oriented applications, such as the use of 3D-printed food as a drug vehicle, and four-dimensional food printing (4DFP). We also reviewed the use of this technology in aesthetic food improvement, which is the most popular use of 3DFP recently. Finally, we provided a prospective and perspective view of this technology. We also reflected on its multidisciplinary character and identified aspects in which social and regulatory affairs must be addressed to fulfill the promises of 3DFP in human health improvement.  相似文献   

3.
食品材料是食品3D打印的关键因素。文章总结了目前在食品3D打印中常用食品材料(蛋白质、淀粉、水凝胶、脂肪)的特点,分析了不同材料组合对成形性能的影响,对不易打印材料如何提高印刷效果给予了一定的建议,指出了目前食品3D打印中食品材料发展面临的技术瓶颈,并对未来食品3D打印技术的发展趋势进行了展望。  相似文献   

4.
BackgroundDigitalizing food using 3-Dimensional (3D) printing is an incipient sector that has a great potential of producing customized food with complex geometries, tailored texture and nutritional content. Yet, its application is still limited and the process utility is under the investigation of many researchers.Scope and approachThe main objective of this review was to analyze and compare published articles pertaining 3D food printing to ensure how to reach compatibility between the huge varieties of food ingredients and their corresponding best printing parameters. Different from previously published reviews in the same journal by Lipton et al. (2015) and Liu et al. (2017), this review focuses in depth on optimizing extrusion based food printing which supports the widest array of food and maintains numerous shapes and textures. The benefits and limitations of 3D food printing were critically reviewed from a different perspective while providing ample mechanisms to overcome those barriers.Key findings and conclusionsFour main obstacles hamper the printing process: ordinance and guidelines, food shelf life, ingredients restrictions and post processing. Unity and integrity between material properties and process parameters is the key for a best end product. For each group, specific criteria should be monitored: rheological, textural, physiochemical and sensorial properties of the material its self in accordance with the process parameters of nozzle diameter, nozzle height, printing speeds and temperature of printing. It is hoped that this paper will unlock further research on investigating a wider range of food printing ingredients and their influence on customer acceptability.  相似文献   

5.
Three-dimensional (3D) food printing is a digital food engineering method that has a remarkable application potential in long-term manned spaceflight. Extrusion-based 3D food printing, among the available 3D food printing techniques utilised in the food industry, is one of the most suitable printing methods for manned spaceflight. Extrusion-based 3D food printing could suffice most of the energy and personalised nutritional requirements of astronauts during long-term stay in space by utilising fruits, vegetables, meat products, and nutrients as printing materials. However, 3D food printing in manned spaceflight is still limited by technologies and costs such as printing materials, microgravity, post-processability of food, and engineering transportation under the existing technical conditions. Therefore, this article reviews the 3D food printing and manned spaceflight technologies that are currently available and discusses the challenges involved in 3D food printing in manned spaceflight, thus providing a theoretical basis for future 3D food printing for space missions.  相似文献   

6.
赖燕娜  马顺  李莺  白盼 《食品与机械》2018,34(1):163-166
从专利申请的角度,对国内外3D打印技术在食品领域的专利申请趋势进行了分析,重点分析了中国食品领域3D打印技术专利申请的申请人分布、法律状态、应用方向、发展路线等,探讨了3D打印技术在食品领域的发展趋势和开发应用情况,总结3D打印技术在食品加工中存在的问题和面临的挑战,为中国3D打印技术在食品领域的发展提供参考。  相似文献   

7.
3-D printing is a neoteric technology that can make existing food value chains client-desirable and sustainable by providing on-demand food production, enabling automated food personalisation, and minimising food wastage. It can address food scarcity in countries where affordable and fresh ingredients are inaccessible by integrating nutrient-rich substrates, probiotics, bioactive compounds, and functional ingredients into complex fabricated foods. The global food processing industries are endorsing 3-D food printing technology to make production more efficient and self-reliant, anticipating a compound annual growth rate of ~55%. This review paper provides a holistic outlook of the technology beginning with the various techniques utilised for 3-D printing and printers available in the market. Substantial raw ingredients used for printing and the components in the future precision and personalised foods are discussed. The pros and cons of this technology along with its potential applications and future perspectives of 3-D food printing are also evaluated.  相似文献   

8.
淀粉原料3D打印特性   总被引:6,自引:0,他引:6  
3D打印作为一种新兴的加工方法,在食品制造领域受到越来越多的关注。该研究以马铃薯、小麦和玉米淀粉为原料,对3D打印样品的特性进行了研究。采用外观形态、颜色、碘吸收光谱、快速黏度分析仪(rapid visco analysis,RVA)、质构分析、傅里叶变换红外光谱(fourier transform infrared spectroscopy,FT-IR)和扫描电镜(scanning electron microscope,SEM)对产品质量进行了评价。结果表明,所有淀粉凝胶均可获得完整的3D打印模型。用小麦淀粉制作的3D打印样品的尺寸最接近CAD设计模型。小麦淀粉凝胶具有较低的黏度、较好的挤出性和贮藏性能。此外,小麦淀粉制作的3D打印样品的微观结构比马铃薯淀粉和玉米淀粉具有更规则的网状结构。为3D打印技术在食品生产中的应用提供了理论依据,并为实际生产提供了技术支持。  相似文献   

9.
以荔枝干、食品胶(κ-卡拉胶和黄原胶)、蜂蜡和火龙果皮为原料,利用3D打印机、流变仪和扫描电镜探讨不同配比对复合型荔枝材料流变学性质与打印成型的影响,并对其微观结构进行了研究。当添加卡拉胶:黄原胶比例为1:1,蜂蜡添加量8.0 g,火龙果皮粉添加量2.0 g时,复合型荔枝油墨材料的稳定化时间为143.5 s,屈服应力为187.55 Pa,K值为1.72×105 Pa·sn,n值为0.22,制备的材料具备较好的剪切稀化性能、热可逆性和机械性能。打印出的产品精度较高,线条细腻,可叠放60层。材料的微观结构以κ-卡拉胶为骨架的网络状,黄原胶、荔枝果肉和果胶等依附在骨架上,蜂蜡以颗粒(直径10μm)附着在骨架的表层,在打印过程中与食品胶共同作用以影响材料的打印成型性。  相似文献   

10.
食品3D打印的发展及挑战   总被引:1,自引:0,他引:1  
李光玲 《食品与机械》2015,31(1):231-234
随着3D打印技术的快速发展,其应用领域从传统模具制造领域不断扩展到建筑、工艺设计和医疗整形等领域。其成本的不断降低得益于Arduino开源硬件技术的发展。在食品行业,3D食品打印将对食物供应短缺、食物个性化需求、人类生活方式以及太空旅行等问题产生深远影响。3D打印食品的材料限制、口感、安全性、成本以及大众心理障碍等是目前食品3D打印所面临的挑战。  相似文献   

11.
食品增稠剂流变学研究综述   总被引:3,自引:0,他引:3  
文章综述了食品流变学研究的目的,增稠剂的相对分子质量、结构、增稠剂溶液浓度、pH值、温度、外界切变力等对增稠剂流变特性的影响和增稠剂间的增效作用以及增稠剂在改善食品流变特性中的应用,即加入少量的增稠剂就能对食品粘度产生惊人的影响,使其获得良好的流变特性。  相似文献   

12.
综述了淀粉类、亲水胶体类、肉类等食材的3D打印特性,分析了打印温度、打印速度、内部填充率、打印喷头直径等打印参数对3D打印制品品质的影响.  相似文献   

13.
Development of 3D food printing applications requires in-depth knowledge on printing behaviour of food materials. In extrusion-based 3D printing, rheological properties of a recipe are critical to achieve successful printing. The objective of this research is to investigate potential correlations between printability of formulations and simple rheological properties. We used tomato paste as a model system to investigate the correlation between printing stability, dispensability and rheological properties. The results show a linear correlation between ingredient's flow stress, zero shear viscosity and corresponding printing stability. The extrusion pressure necessary to extrude tomato paste increased linearly with increasing flow stress. More experiments with other aqueous-based food formulations indicated that their printability aligned reasonably well with the correlation of tomato paste; however, for fat-based products different printing behaviour was observed. Finally, we propose a rational guideline for developing aqueous food recipes with desired printability based on flow stress measured by shear rheology.  相似文献   

14.
文章介绍了适合谷物基3D打印的主要工艺、原理和设备,总结了谷物基原料的打印特性,综述了谷物原料在3D打印中的应用和影响打印效果的主要因素,展望了谷物基食品作为3D打印原料的前景和挑战.  相似文献   

15.
本文以山药淀粉为原料,研究不同淀粉浓度对凝胶体系流变学特性、3D打印特性、色泽变化、质构特性及微观结构的影响规律。结果表明,剪切速率增加,山药淀粉凝胶的表观粘度逐渐降低,即山药淀粉凝胶属于典型假塑性流体体系;随着山药淀粉浓度的增加,凝胶体系的表观粘度、储能模量(G′)及损耗模量(G″)逐渐增加,硬度、胶着性、咀嚼性逐渐增大,L~*、a~*、b~*值逐渐减小,3D打印成型效果、打印精度及稳定性增加,内部微观孔隙减小,网络结构越来越致密。当山药淀粉浓度达16%时,凝胶体系的3D打印成型效果最好,内聚性最大为0.65,打印样品静置1 h后圆柱直径偏差-2.40%,高偏差-1.60%,打印稳定性较高。此研究为3D打印食品原料的开发及山药淀粉营养功能的综合利用提供了理论依据。  相似文献   

16.
张晓会  杨曈  马丕波 《纺织学报》2019,40(12):32-38
为研究竹节结构中空单丝内部结构对其压缩性能的影响,以聚酯为耗材,利用3D打印技术制备了长度为100 mm、外径为2 mm的竹节结构中空单丝和实心单丝,测试了单丝的抗压性能,利用有限元分析探讨了竹节结构中空单丝作为间隔丝对经编间隔织物抗压性能的影响。结果表明:单丝的压缩性能受其内部结构影响,竹节结构中空单丝单位质量承受载荷的能力优于实心单丝;竹节结构中空单丝中空部分所占比例越大,单丝单位质量承受的载荷越大;织物的压缩性能与间隔丝内部结构有关,作为间隔丝的竹节结构中空单丝中空部分所占比例越大,织物单位质量承受的载荷越大。  相似文献   

17.
3D food printing has recently attracted significant attention, both from academic and industrial researchers, due to its ability to manufacture customized products in such terms as size, shape, texture, color, and nutrition to meet demands of individual consumers. 4D printing, which is a technique that allows evolution of various characteristics/properties of 3D printed objects over time through external stimulation, has also been gaining more attention. In order to produce defect-free printed objects via both 3D and 4D printing, it is necessary to first identify the causes of defects and then their mitigation strategies. Comprehensive review on these important issues is nevertheless missing. The purpose of this review is to investigate causes and characteristics of defects occurring during and/or after 3D food printing, with a focus on how different factors affect the printing accuracy. Various techniques that can potentially minimize or eliminate printing defects and produce high-quality 3D/4D printed food products without the need for time-consuming trial and error printing experiments are critically discussed. Guidelines to avoid defects to improve the efficiency of future 3D/4D printed food production are given.  相似文献   

18.
Viscoelastic properties of 3D printable peanut-based food ink were investigated using frequency sweep and relaxation test. The incorporation of xanthan gum (XG) improved the shear thinning behavior (n value ranging from 0.139 to 0.261) and lowered the η*, G′, and G′′ values, thus making food ink 3D printable. The addition of XG also caused a downward shift in the relaxation curve. This study evaluates the possibility of an artificial neural network (ANN) approach as a substitute for the Maxwell three-element and Peleg model for predicting the viscoelastic behavior of food ink. The results revealed that all three models accurately predicted the decay forces. The inclusion of XG decreased the hardness and enhanced the cohesiveness, so enabling the 3D printing of food ink. The hardness was highly positively correlated with Maxwell model parameters Fe, F1, F2, F3, and Peleg constant k2 (0.57) and negatively correlated with k1 (−0.76).  相似文献   

19.
随着3D打印技术的发展,其应用领域从传统的工业设计逐渐扩展到建筑、医疗、食品等行业。本文以食品行业中的3D巧克力打印为前提,概述了3D巧克力打印的现状,根据目前市面上常见的3D巧克力打印头结构的特点,详细介绍了一种基于气动活塞式结构的3D巧克力打印头的设计,并对该打印头的实际打印效果进行验证,总结了该结构的打印头的优缺点。  相似文献   

20.
姚青华 《食品与机械》2016,32(2):98-100,110
糕点行业中的奶油食品是快速消费品,具有厚、稠、粘特性,针对奶油类食品加工的特点,结合微机技术,设计了主要由电源模块、控制模块、执行模块和驱动模块组成3D奶油打印机方案。该方案利用喷射技术、三相机械控制技术解决了奶油的不易流动性,保证了清洗方便性。在设计中采用了成熟的设备设施进行有机组合,并对关键部件及技术做了具体说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号