共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于隐马尔可夫模型的运动目标轨迹识别 * 总被引:4,自引:1,他引:3
引入改进的隐马尔可夫模型算法,针对真实场景中运动目标轨迹的复杂程度对各个轨迹模式类建立相应的隐马尔可夫模型,利用训练样本训练模型得到可靠的模型参数;计算测试样本对于各个模型的最大似然概率,选取最大概率值对应的轨迹模式类作为轨迹识别的结果,对两种场景中聚类后的轨迹进行训练与识别。实验结果表明,平均识别率分别达到87.76 %和94. 19%。 相似文献
3.
To manipulate the layout analysis problem for complex or irregular document image, a Unified HMM-based Layout Analysis Framework is presented in this paper. Based on the multi-resolution wavelet analysis results of the document image, we use HMM method in both inner-scale image model and trans-scale context model to classify the pixel region properties, such as text, picture or background. In each scale, a HMM direct segmentation method is used to get better inner-scale classification result. Then another HMM method is used to fuse the inner-scale result in each scale and then get better final segmentation result. The optimized algorithm uses a stop rule in the coarse to fine multi-scale segmentation process, so the speed is improved remarkably. Experiments prove the efficiency of proposed algorithm. 相似文献
4.
已有的轨迹预测算法针对移动对象运动模式,使用数学模型进行交通流模拟,难以对路网中的移动对象进行准确的描述.为了解决这一问题,提出基于隐马尔可夫模型(hidden Markov model,简称HMM)的自适应轨迹预测模型SATP(self-adaptive trajectory prediction model based on HMM),对大数据环境下移动对象海量轨迹利用基于密度的聚类方法进行位置密度分区和高效分段处理,减少HMM的状态数量.根据输入轨迹自动选取参数组合,避免HMM模型中隐状态不连续、状态停留等问题.实验结果表明,SATP模型在实验中表现出较高的预测准确性,并维持较低的时间开销.针对速度随机改变的移动对象,其平均预测准确率为84.1%;相同情况下,平均高出朴素预测算法46.7%. 相似文献
5.
近年来, 随着全球定位系统(global positioning system, GPS)的大范围应用, 越来越多的电动自行车装配了GPS传感器, 由此产生的海量轨迹数据是深入了解用户出行规律、为城市规划者提供科学决策支持等诸多应用的重要基础. 但是, 电动自行车上普遍使用的价格低廉的GPS传感器无法提供高精度的定位, 同时, 电动自行车轨迹地图匹配过程因以下原因更具有挑战性: (1)存在大量停留点; (2)高采样频率导致相邻轨迹点的距离较短; (3)电动自行车可行驶的路段更多, 存在大量无效轨迹. 针对上述问题, 提出一种可自适应路网精度的电动自行车轨迹地图匹配方法KFTS-AMM. 该方法融合基于分段卡尔曼滤波算法的轨迹简化算法(KFTS), 和分段隐马尔可夫模型的地图匹配算法(AMM). 首先, 利用卡尔曼滤波算法可用于最优状态估计的特性, KFTS能够在轨迹简化过程中对轨迹点进行自动修正, 使轨迹曲线变得平滑并减少了异常点对于地图匹配准确率的影响. 同时, 使用基于分段隐马尔可夫模型的地图匹配算法AMM, 避免部分无效轨迹对整条轨迹匹配的影响. 此外, 在轨迹数据的处理过程加入了停留点的识别与合并, 进一步提升匹配准确率. 在郑州市真实电动自行车轨迹数据的实验结果表明, KFTS-AMM在准确率上相对于已有的对比算法有较大的提升, 并可通过使用简化后的轨迹数据显著提升匹配速度. 相似文献
6.
Computer vision based methods for detecting weeds in lawns 总被引:4,自引:0,他引:4
Ukrit Watchareeruetai Yoshinori Takeuchi Tetsuya Matsumoto Hiroaki Kudo Noboru Ohnishi 《Machine Vision and Applications》2006,17(5):287-296
In this paper, two methods for detecting weeds in lawns using computer vision techniques are proposed. The first is based on an assumption about the differences in statistical values between the weed and grass areas in edge images and using Bayes classifier to discriminate them. The second also uses the differences in texture between both areas in edge images but instead applies only simple morphology operators. Correct weed detection rates range from 77.70 to 82.60% for the first method and from 89.83 to 91.11% for the second method. From the results, the methods show the robustness against lawn color change. In addition, the proposed methods together with a chemical weeding system as well as a non-chemical weeding system based on pulse high voltage discharge are simulated and the efficiency of the overall systems are evaluated theoretically. With a chemical based system, more than 72% of the weeds can be destroyed with a herbicide reduction rate of 90–94% for both methods. For the latter weeding system, killed weed rate varies from 58 to 85%. 相似文献
7.
8.
主题分割技术是快速并有效地对新闻故事节目进行检索和管理的基础。传统的基于隐马尔可夫模型(HiddenMarkov Model,HMM)的主题分割技术仅使用主题和主题之间的转移寻找主题边界进行新闻分割,并未考虑各主题中词与词之间存在的潜在语义关系。本文提出一种基于隐马尔科夫模型的改进算法。该算法使用潜在语义分析(Latent Se-mantic Analysis,LSA)对词频向量进行特征提取和降维,考虑了词与词之间的上下文关系,通过聚类得到文档类别信息,以LSA特征和主题类别作为HMM的观测和隐状态,这样同时考虑了主题之间的关系,最终实现对文本主题分割。数据实验表明,该算法具有较好的分割性能。 相似文献
9.
基于连续隐马尔可夫模型的人脸识别方法 总被引:1,自引:0,他引:1
提出了一种基于连续隐马尔可夫模型的人脸图像识别方法,主要内容包括以下方面:①由于奇异值向量具有稳定性.转置不变性等特点,对归一化的人脸图像,采用奇异值分解抽取人脸图像特征作为观察值序列;②在人脸识别中应用连续隐马尔可夫模型,采用双高斯概率密度函数训练,建立HMM模型,再利用建好的HMM模型进行识别.实验结果显示,所提出的方法减少了数据计算量,运行速度快,并提高了识别率,完全满足人脸识别系统实时性要求. 相似文献
10.
针对现有大多数地图匹配方法在城市复杂环境下难以有效平衡匹配速度和精度的问题,提出了一种基于路网复杂度分区的轨迹分段地图匹配方法。该方法包括路网分区和轨迹分段匹配两个部分。通过构建的路网复杂度分区模型将路网划分为复杂区域和非复杂区域;对复杂区域内的轨迹段采用改进的隐马尔可夫模型进行匹配,非复杂区域内的轨迹段采用基于几何拓扑的快速匹配模型进行匹配;将不同区域内匹配的轨迹段进行拼接,得到完整轨迹的匹配结果。为得到路网复杂度分区模型的最优参数,进行了11组不同参数设置的对比实验,并将最终结果与ST-matching和传统隐马尔可夫模型两种地图匹配方法匹配的结果进行对比。结果表明,在三个数据集的匹配准确率均在96%以上,比其他两种对比算法匹配时间减少了60%,在保证匹配准确率的前提下有效提升了匹配效率。 相似文献
11.
虽然基于对角协方差矩阵高斯分布的隐马尔可夫模型(HiddenMarkovModelBasedonDiagonalGaussiandistributions,HMM-DG)目前在现代大词表连续语音识别系统中得到了广泛的应用,但HMM-DG在帧内特征相关(intra-framefeaturescorrelation)建模方面存在缺陷。该文将因子分析方法与HMM-DG的混合高斯建模相结合,提出了一种具有弹性的帧内特征相关隐马尔可夫模型框架—基于因子分析的隐马尔可夫模型(HiddenMarkovModelBasedonFactorAnalysis,HMM-FA),并导出了HMM-FA的训练算法。仿真实验表明:在相同的条件下,HMM-FA的性能优于HMM-DG。 相似文献
12.
经典隐马尔可夫模型用于语音识别存在的两个主要缺陷是“离散状态假设”和“独立分布假设”。前者忽略了语音信号的非平稳性,后者忽略了语音信号的相关性。文章将混合因子分析方法用于语音建模,提出了基于混合因子分析的隐马尔可夫模型框架,并用动态贝叶斯网络形象地表示。该模型框架不仅从理论上解决了上述问题,而且给出许多语音建模的选择。目前广泛使用的统计声学模型均可视为该模型的特例。 相似文献
13.
针对隐马尔可夫模型传统训练算法易收敛于局部极值的问题,提出一种带极值扰动的自适应调整惯性权重和加速系数的粒子群算法,将改进后的粒子群优化算法引入到隐马尔可夫模型的训练中,分别对隐马尔可夫模型的状态数与参数进优化.通过对手写数字识别的实验说明,提出的基于改进粒子群优化算法的隐马尔可夫模型训练算法与传统隐马尔可夫模型训练算法Baum-Welch算法相比,能有效地跳出局部极值,从而使训练后的隐马尔可夫模型具有较高的识别能力. 相似文献
14.
Chengliang WANG Yayun PENG Debraj DE Wen-Zhan SONG 《Frontiers of Computer Science》2016,10(6):1000-1011
In this paper, we have proposed and designed DPHK (data prediction based on HMM according to activity pattern knowledge mined from trajectories), a real-time distributed predicted data collection system to solve the congestion and data loss caused by too many connections to sink node in indoor smart environment scenarios (like Smart Home, Smart Wireless Healthcare and so on). DPHK predicts and sends predicted data at one time instead of sending the triggered data of these sensor nodes which people is going to pass in several times. Firstly, our system learns the knowledge of transition probability among sensor nodes from the historical binary motion data through data mining. Secondly, it stores the corresponding knowledge in each sensor node based on a special storage mechanism. Thirdly, each sensor node applies HMM (hidden Markov model) algorithm to predict the sensor node locations people will arrive at according to the receivedmessage. At last, these sensor nodes send their triggered data and the predicted data to the sink node. The significances of DPHK are as follows: (a) the procedure of DPHK is distributed; (b) it effectively reduces the connection between sensor nodes and sink node. The time complexities of the proposed algorithms are analyzed and the performance is evaluated by some designed experiments in a smart environment. 相似文献
15.
提出了一种用于股票价格预测的人工神经网络(ANN),隐马尔可夫模型(HMM)和粒子群优化算法(PSO)的组合模型-APHMM模型.在APHMM模型中,ANN算法将股票的每日开盘价、最高价、最低价与收盘价转换为相互独立的量并作为HMM的输入.然后,利用PSO算法对HMM的参数初始值进行优化,并用Baum-Welch算法进行参数训练.经过训练后的HMM在历史数据中找出一组与今天股票的上述4个指标模式最相似数据,加权平均计算每个数据与它后一天的收盘价格差,则今天的股票收盘价加上这个加权平均价格差便为预测的股票收盘价.实验结果表明,APHMM模型具有良好的预测性能. 相似文献
16.
一种改进的隐马尔可夫模型在语音识别中的应用 总被引:1,自引:0,他引:1
提出了一种新的马尔可夫模型——异步隐马尔可夫模型.该模型针对噪音环境下语音识别过程中出现丢失帧的情况,通过增加新的隐藏时间标示变量Ck,估计出实际观察值对应的状态序列,实现对不规则或者不完整采样数据的建模.详细介绍了适合异步HMM的前后向算法以及用于训练的EM算法,并且对转移矩阵的计算进行了优化.最后通过实验仿真,分别使用经典HMM和异步HMM对相同的随机抽取帧的语音数据进行识别,识别结果显示在抽取帧相同情况下异步HMM比经典HMM的识别错误率低. 相似文献
17.
基于特征的汉语词性标注模型 总被引:5,自引:0,他引:5
在隐马尔可夫模型的基础上提出了基于词汇特征的汉语词性标注模型.此模型不但考虑系统t时刻的状态(词类)对r l时刻的状态的影响,还把t时刻的观察(词)对t l时刻的状态的影响考虑进去,使模型更加精确.由于观察的数目较大,构造观察-状态转移概率矩阵的方法难以实用,于是给观察标以特征,并训练特征-状态转移概率矩阵,使概率矩阵占用较少的存储空间,实现了模型的精确和实用性的统一. 相似文献
18.
Di Wu Gabriel Pui Cheong Fung Jeffrey Xu Yu Qi Pan 《Frontiers of Computer Science in China》2009,3(2):145-157
There are many real applications existing where the decision making process depends on a model that is built by collecting
information from different data sources. Let us take the stock market as an example. The decision making process depends on
a model which that is influenced by factors such as stock prices, exchange volumes, market indices (e.g. Dow Jones Index),
news articles, and government announcements (e.g., the increase of stamp duty). Yet Nevertheless, modeling the stock market
is a challenging task because (1) the process related to market states (rise state/drop state) is a stochastic process, which
is hard to capture using the deterministic approach, and (2) the market state is invisible but will be influenced by the visible
market information, like stock prices and news articles. In this paper, we propose an approach to model the stock market process
by using a Non-homogeneous Hidden Markov Model (NHMM). It takes both stock prices and news articles into consideration when
it is being computed. A unique feature of our approach is event driven. We identify associated events for a specific stock
using a set of bursty features (keywords), which has a significant impact on the stock price changes when building the NHMM.
We apply the model to predict the trend of future stock prices and the encouraging results indicate our proposed approach
is practically sound and highly effective. 相似文献
19.
Paolo Frasconi Giovanni Soda Alessandro Vullo 《Journal of Intelligent Information Systems》2002,18(2-3):195-217
In the traditional setting, text categorization is formulated as a concept learning problem where each instance is a single isolated document. However, this perspective is not appropriate in the case of many digital libraries that offer as contents scanned and optically read books or magazines. In this paper, we propose a more general formulation of text categorization, allowing documents to be organized as sequences of pages. We introduce a novel hybrid system specifically designed for multi-page text documents. The architecture relies on hidden Markov models whose emissions are bag-of-words resulting from a multinomial word event model, as in the generative portion of the Naive Bayes classifier. The rationale behind our proposal is that taking into account contextual information provided by the whole page sequence can help disambiguation and improves single page classification accuracy. Our results on two datasets of scanned journals from the Making of America collection confirm the importance of using whole page sequences. The empirical evaluation indicates that the error rate (as obtained by running the Naive Bayes classifier on isolated pages) can be significantly reduced if contextual information is incorporated. 相似文献
20.
提出一种基于轨迹分段主题模型的异常行为检测方法。为了解决跟踪偏差引起的轨迹不连续问题,首先使用模糊聚类算法对所有的轨迹进行全局聚类,然后对每一类轨迹采用分段采样的方式对段内轨迹点使用主题模型LDA进行局部聚类;以最大概率的轨迹点作为视觉单词,每类轨迹表示成一系列视觉单词的集合,在此基础上建立局部隐马尔科夫模型HMM;最后通过轨迹匹配的方法进行异常轨迹识别。在CAVIAR数据库上的实验结果表明,该算法能识别多种异常行为,提高了异常行为检测的准确率。 相似文献