首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
The influence of carbonate on the ozone/hydrogen peroxide process has been investigated. Carbonate radicals, which are formed from the reaction of bicarbonate/carbonate with OH radicals, act as a chain carrier for ozone decomposition due to their reaction with hydrogen peroxide. The efficiency of bicarbonate/carbonate as a promoter for the radical-based chain reaction in presence of hydrogen peroxide has been calibrated and compared to a well-known chain promoter (methanol) and an inhibitor (tert-butanol). Relative to tert-butanol, the hydrogen peroxide induced ozone decomposition is accelerated by bicarbonate/carbonate. Relative to methanol, bicarbonate/carbonate in presence of hydrogen peroxide is less effective as a promoter under comparable experimental conditions.  相似文献   

2.
The heterogeneous catalytic decomposition of ozone was investigated over unsupported manganese and cobalt oxide at room temperature. All catalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption (Brunauer–Emmet–Teller method), H2-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic activity test indicated that these oxides had a good activity on ozone conversion meanwhile the catalysts remained highly active over time under reaction conditions. The treated temperature of the catalyst had a significant impact on the performance of ozone abatement and the samples treated at lower temperature showed higher activity. The surface area decreased obviously when developing the calcination temperature and H2-TPR results demonstrated that much higher oxidation state of metal ions and active oxygen species were maintained on the surface under low treated temperature. XPS analysis showed that there were higher oxidation states of metal ions (Mn4+ and Co3+) and adsorbed oxygen species on the surface of catalysts treated at lower temperature, both of which play a significant role in ozone decomposition. However, the activity of manganese oxide was higher than that of cobalt oxide and the possible reason for this phenomenon was discussed.  相似文献   

3.
This paper reviews the efficacy of ozone an emerging non-thermal food preservation technique for fruit juices and highlights changes in key microbial, quality and nutritional parameters. Ozonation of fruit juices has been identified as a potential technology to meet the United States Food and Drug Administration's requirement of a 5 log reduction in pertinent microorganisms found in juices. This review suggests that it is important to identify the critical extrinsic and intrinsic control parameters governing both the efficacy and quality effects during ozonation of fruit juices.  相似文献   

4.
In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin–Schramm medium. The BC yield from the PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.  相似文献   

5.
The decomposition of ozone in wastewater is observed starting 350 milliseconds after ozone addition. It seems not to be controlled by the autocatalytic chain reaction, but rather by direct reactions with reactive moieties of the dissolved organic matter (DOM). A larger ozone dose increases ozone consumption prior to 350 milliseconds but decreases the rate of ozone decomposition later on; this effect is predicted by a second-order kinetic model. Transferred Ozone Dose (TOD) is poorly correlated with ozone exposure (= ∫[O3]dt) indicating that TOD is not a suitable parameter for the prediction of disinfection or oxidation in wastewater. HO? concentrations (> 10?10 M) and Rct (=∫[HO?]dt/∫[O3]dt > 10?6) are larger than in most advanced oxidation processes (AOP) in natural waters, but rapidly decrease over time. Rct also decreases with increasing pre-ozonation doses. An increase in pH accelerates ozone decomposition and HO? generation; this effect is predicted by a kinetic model taking into account deprotonation of reactive moieties of the DOM. DOC emerges as a crucial water quality parameter that might be of use to normalize ozone doses when comparing ozonation in different wastewaters. A rapid drop of absorbance in the water matrix—with a maximum between 255–285 nm—is noticeable in the first 350 milliseconds and is directly proportional to ozone consumption. The rate of absorbance decrease at 285 nm is first order with respect to ozone concentration. A kinetic model is introduced to explore ozone decomposition induced by distributions of reactive moieties at sub-stoichiometric ozone concentrations. The model helps visualize and comprehend the operationally-defined “instantaneous ozone demand” observed during ozone batch experiments with DOM-containing waters.  相似文献   

6.
Increased public awareness, potential human health effects, and demonstrated impacts on aquatic ecosystems have stimulated recent interest in pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) in water and wastewater. Due to the potential public and environmental health implications, some agencies are taking a proactive approach to controlling trace organic contaminant (TOrC) concentrations in water supplies. This review describes some of the research related to the toxicity and estrogenicity of wastewater-derived TOrCs in addition to regulatory guidance from several international agencies. This review also evaluates pilot- and full-scale studies to characterize the efficacy of ozonation for TOrC mitigation in wastewater applications.  相似文献   

7.
8.
This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz–12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.  相似文献   

9.
In this article, the effectiveness of an advanced sludge treatment technology (Wet Oxidation, WO) is presented by analyzing experimental studies at the lab scale and data collected during years of industrial-scale activities. The data showed good performances of WO on COD and VSS removal efficiencies—about 65–70% and 95–98%, respectively—and the effect of operating parameters (i.e., temperature and reaction time) on process efficiencies was highlighted. The energy balance of the WO systems indicated that about 90% of the energy entering the system may be recovered. Finally, a techno-economic assessment showed that WO can be a suitable solution for sludge treatment and minimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号