首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleate pool boiling heat transfer of a refrigerant-based-nanofluid was investigated at different nanoparticle concentrations and pressures. TiO2 nanoparticles were mixed with the refrigerant HCFC 141b at 0.01, 0.03 and 0.05 vol%. The experiment was performed using a cylindrical copper tube as a boiling surface. Pool boiling experiments of nanofluid were conducted and compared with that of the base refrigerant. The results indicate that the nucleate pool boiling heat transfer deteriorated with increasing particle concentrations, especially at high heat fluxes. At 0.05 vol%, the boiling heat transfer curves were suppressed. At high pressures of 400 and 500 kPa, the boiling heat transfer coefficient at a specific excess temperature was almost the same.  相似文献   

2.
TiO2 nanoparticle-coated nickel wires were produced by electrical heating in various nanofluid concentrations ranging from 0.01 to 1 wt.% with various processing heat fluxes from 0 to 1000 kW/m2. The experimental results demonstrated up to 82.7% enhancement on critical heat flux (CHF) in condition of coated nickel wire (processed in 1 wt.% with 1000 kW/m2) boiling in pure water. The contact angle measurement revealed that the hydrophilic porous coating formed by vigorous vaporization of TiO2 nanofluid in nucleate boiling regime enormously modified the wettability of heating surface consequently improving the CHF. Besides, it is evident that the coverage of nanoparticle deposition tended to become more complete as concentration and processing heat flux increased based on SEM and EDS analysis. The nanoparticles dispersed in base fluid exhibited little effect on CHF enhancement and could even hinder the percentage of CHF augmentation from boosting, which demonstrated that one could enhance CHF by using only small amount of nanoparticles just adequate to form surface coatings instead of preparing working fluid with great bulk. However, according to the boiling curves in all cases of coated nickel wires, it is supposed that the nucleate boiling heat transfer coefficient deteriorates as a result of thermal resistance resulted from the occurrence of nanoparticle deposition. In summary, the coated porous structure of nanoparticles leads to enhance CHF and to decrease boiling heat transfer coefficient.  相似文献   

3.
Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles was investigated experimentally. For the preparation of the test fluid, refrigerant R113, ester oil VG68, and Cu nanoparticles with three different average diameters of 20, 50 and 80 nm were used. Experimental conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m?2, nanoparticle concentrations in the nanoparticles/oil suspension from 0 to 30 wt%, and nanoparticles/oil suspension concentrations from 0 to 5 wt%. The experimental results indicate that the nucleate pool boiling heat transfer coefficient of R113/oil mixture with Cu nanoparticles is enhanced by a maximum of 23.8% with the decrease of nanoparticle size from 80 to 20 nm under the present experimental conditions, and the enhancement increases with the decrease of nanoparticles/oil suspension concentration or the increase of nanoparticles concentrations in the nanoparticles/oil suspension. A general nucleate pool boiling heat transfer coefficient correlation for refrigerant/oil mixture with nanoparticles is proposed, and it agrees with 93% of the existing experimental data of refrigerant/oil mixture with nanoparticles within a deviation of ±20%.  相似文献   

4.
Titanium Dioxide, TiO2, is a photocatalyst with a unique characteristic. A surface coated with TiO2 exhibits an extremely high affinity for water when exposed to UV light and the contact angle decreases nearly to zero. Inversely, the contact angle increases when the surface is shielded from UV. This superhydrophilic nature gives a self-cleaning effect to the coated surface and has already been applied to some construction materials, car coatings and so on. We applied this property to the enhancement of boiling heat transfer. An experiment involving the pool boiling of pure water has been performed to make clear the effect of high wettability on heat transfer characteristics. The heat transfer surface is a vertical copper cylinder of 17 mm in diameter and the measurement has been done at saturated temperature and in a steady state. Both TiO2-coated and non-coated surfaces were used for comparison. In the case of the TiO2-coated surface, it is exposed to UV light for a few hours before experiment and it is found that the maximum heat flux (CHF) is about two times larger than that of the uncoated surface. The temperature at minimum heat flux (MHF) for the superhydrophilic surface is higher by 100 K than that for the normal one. The superhydrophilic surface can be an ideal heat transfer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
《Energy》2005,30(2-4):209-220
Titanium dioxide, TiO2, is one of the photocatalysts that has a very unique characteristic. The surface coated with TiO2 exhibits extremely high affinity for water by exposing the surface to UV light and the contact angle decreases nearly to zero. On the contrary, the contact angle increases when the surface is shielded from UV light. We applied this superhydrophilic nature to enhancement of boiling and evaporation heat transfer. Experiments of pool boiling and evaporation of single water droplet have been performed to manifest the effect of high wettability on heat transfer characteristics. Both of TiO2-coated and non-coated surfaces were used for comparison in each experiment. It is found that (1) the critical heat flux (CHF) of TiO2-coated surface is about two times larger than that of non-coated one, and (2) Leidenfrost temperature increases as the contact angle decreases. The superhydrophilic surface can be an ideal heat transfer surface.  相似文献   

6.
An experimental study was performed to investigate the nucleate boiling and critical heat flux (CHF) of water and FC-72 dielectric liquid on hydrophilic titanium oxide (TiO2) nanoparticle modified surface. A 1 cm2 copper heater with 1 μm thick TiO2 coating was utilized in saturated pool boiling tests with water and highly-wetting FC-72, and its performance was compared to that of a smooth surface. Results showed that TiO2 coated surface increased CHF by 50.4% and 38.2% for water and FC-72, respectively, and therefore indicated that boiling performance enhancement depends on the level of wettability improvement. A silicon oxide (SiO2) coated surface, exhibiting similar surface topology, was tested to isolate the roughness related enhancement from the overall enhancement. Data confirmed that hydrophilicity of TiO2 coated surface provides an additional mechanism for boiling enhancement.  相似文献   

7.
This paper deals with pool boiling of water–Al2O3 and water–Cu nanofluids on porous coated, horizontal tubes. Commercially available stainless-steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate a test heater. Aluminum porous coatings 0.15 mm thick with porosity of about 40% were produced by plasma spraying. A smooth tube served as a reference tube. The experiments were conducted under different absolute operating pressures of 200 kPa, 100 kPa, and 10 kPa. Nanoparticles were tested at concentrations of 0.01%, 0.1%, and 1% by weight. In all cases tested, enhancement heat transfer was always observed during boiling of water–Al2O3 and water–Cu nanofluids on smooth tubes compared to boiling of distilled water. Contrary to smooth tubes, addition of even a small amount of nanoparticles resulted in deterioration of heat transfer during pool boiling of water–Al2O3 and water–Cu nanofluids on porous coated tubes in comparison with boiling of distilled water.  相似文献   

8.
ABSTRACT

Nanostructured microporous surfaces were electrodeposited at various electrolyte temperatures on copper substrate to investigate the saturated pool boiling enhancement of distilled water at atmospheric pressure. Surface structure topography and wickability were analyzed to investigate their relation to critical heat flux. Scanning electron microscope showed that the micro-clusters have nanostructures from cubic at 5°C to dendritic at 60°C electrolyte temperature. Rate-of-rise experiments demonstrated that dendritic copper structure has the best capillary performance. The experimental results of pool boiling heat transfer indicate that the critical heat flux increased with surface wickability. Electrodeposited porous surface in hot electrolyte showed the highest critical heat flux and heat transfer coefficient of the 124 W/cm2 and 17 W/cm2K, respectively, which is 50% and 270% higher than that of plain surface. However, the two-step electrodeposition and annealing were used in fabrication of surfaces, but the mechanical strength of layer needs more improvement by changing the electrochemical process parameters.  相似文献   

9.
Arvind Jaikumar  Anju Gupta 《传热工程》2017,38(14-15):1274-1284
ABSTRACT

Boiling has served as an effective means to dissipate large quantities of heat over small areas. Graphene, a two-dimensional material, has garnered significant attention of researchers due to its excellent thermal properties. In this study, copper test chips are dip coated with a solution consisting of graphene oxide and graphene and its pool boiling performance with distilled water at atmospheric pressure was investigated. The surfaces were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy which confirmed the presence of graphene and graphene oxide. The contact angles measured on the coated surfaces indicated hydrophobic wetting behavior. Four heat transfer surfaces were prepared with dip coating durations of 120 s, 300 s, 600 s, and 1200 s, respectively. A Critical Heat Flux (CHF) of 182 W/cm2 and a heat transfer coefficient (HTC) of 96 kW/m2°C was obtained with the shortest coating duration which translated to an enhancement of 42% in CHF and 47% in HTC when compared to a plain uncoated surface under similar conditions. Contact angle changes were not seen to be responsible, although roughness was seen as an influencing factor contributing to the enhancement. Further studies are needed to explain the enhancement mechanism.  相似文献   

10.
In this study, pool boiling test results are provided for the structured enhanced tubes having pores with connecting gaps. The surface geometry of the present tube is similar to that of Turbo-B. Three tubes with different pore size (0.20 mm, 0.23 mm and 0.27 mm) were manufactured and tested using R-11, R-123 and R-134a. The pore size which yields the maximum heat transfer coefficient varied depending on the refrigerant. For R-134a, the maximum heat transfer coefficient was obtained for the tube having 0.27 mm pore size. For R-11 and R-123, the optimum pore size was 0.23 mm. One novel feature of the present tubes is that their boiling curves do not show a ‘cross-over’ characteristic, which existing pored tubes do. The connecting gaps of the present tube are believed to serve an additional route for the liquid supply and delay the dry-out of the tunnel. The present tubes yield the heat transfer coefficients approximately equal to those of the existing pored enhanced tubes. At the heat flux 40 kW/m2 and saturation temperature 4.4° C, the heat transfer coefficients of the present tubes are 6.5 times larger for R-11, 6.0 times larger for R-123 and 5.0 times larger for R-134a than that of the smooth tube  相似文献   

11.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

12.
Minsoo Kim 《传热工程》2019,40(12):973-984
ABSTRACT

The present study investigated the evaporation heat transfer coefficients of R-446A, as a low global warming potential alternative refrigerant to R-410A. The evaporation heat transfer coefficients were obtained by measuring the wall temperature of a straight stainless tube and refrigerant pressure. The heat transfer coefficients were measured for the quality range from 0.05 to 0.95, the mass flux from 100 to 400 kg/m2s, heat flux from 10 to 30 kW/m2, and saturation temperature from 5 to 10°C. The evaporation heat transfer coefficient of R-410A was verified by comparing the measured evaporation heat transfer coefficient with the value predicted by the existing correlation. The evaporation heat transfer coefficient of R-446A was measured using a proven experimental apparatus. When the heat flux was 10 kW/m2, the evaporation heat transfer coefficient of R-446A was always higher than that of R-410A. But, when the heat flux was 30 kW/m2, the evaporation heat transfer coefficient of R-446A was measured to be lower than that of R-410A near the dry-out point. The effect of the tube diameter on the R-446A evaporation heat transfer coefficient was negligible. The effect of saturation pressure on the evaporation heat transfer coefficient was prominent in the low quality region where the nucleate boiling was dominant.  相似文献   

13.
Experiments are conducted here to investigate how the channel size affects the saturated flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured heat transfer data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the gap of the duct. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases slightly at increasing R-134a mass flux. Moreover, the bubble departure frequency increases at reducing duct size mainly due to the rising shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Correlation for the present saturated flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

14.
ABSTRACT

This study presents an experimental exploration of flow boiling heat transfer in a spiraling radial inflow microchannel heat sink. The effect of surface wettability, fluid subcooling, and mass fluxes are considered. The design of the heat sink provides an inward radial swirl flow between parallel, coaxial disks that form a microchannel of 300 microns. The channel is heated on one side, while the opposite side is essentially adiabatic to simulate a heat sink scenario for electronics cooling. To explore the effects of varying surface wetting, experiments were conducted with two different heated surfaces. One was a clean, machined copper surface and the other was a surface coated with zinc oxide nanostructures that are superhydrophilic. During boiling, increased wettability resulted in quicker rewetting and smaller bubble departure diameter, as indicated by reduced temperature oscillations during boiling, and achieving higher maximum heat flux without dryout. The highest heat transfer coefficients were seen in fully developed boiling with low subcooling levels as a result of heat transfer being dominated by nucleate boiling. The highest heat fluxes achieved were during partial subcooled flow boiling at 300 W/cm2 with an average surface temperature of 134° Celsius. Recommendations for electronics cooling applications are also discussed.  相似文献   

15.
Heat transfer characteristics of confined submerged jet impingement boiling of air-dissolved FC-72 on heated micro-pin-finned surfaces are presented. The dimension of the silicon chips is 10 × 10 × 0.5 mm3 (length × width × thickness) on micro-pin-fins with the four dimensions of 30 × 30 × 60 μm3, 50 × 50 × 60 μm3, 30 × 30 × 120 μm3, and 50 × 50 × 120 μm3 fabricated by using the dry etching technique. For comparison, experiments of jet impinging on a smooth surface were also conducted. The results have shown that submerged jet impingement boiling gives a large heat transfer enhancement compared with pool boiling, and all micro-pin-fins showed better heat transfer performance than a smooth surface. The effects of jet Reynolds number, jet inlet subcooling, micro-pin-fins, and nozzle-to-surface distance on jet impingement boiling heat transfer were explored. For micro-pin-fins, the maximum allowable heat flux increases with jet Reynolds number and subcooling. The largest value of the maximum allowable heat flux of micro-pin-fins by submerged jet impingement boiling is 157 W/cm2, which is about 8.3 times as large as that for the smooth surface in pool boiling. Also, Nusselt number has a strong dependence on Reynolds number.  相似文献   

16.
This work presents the results of an experimental study concerning the heat transfer characteristics of two-phase flow condensation and boiling of tetrary (R-32/R-125/R143a/R134a) refrigerant mixtures inside water/refrigerant horizontal enhanced surface tubing. Heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of the tetrary refrigerant mixtures, have been predicted and compared with other mixtures during flow condensation and boiling inside enhanced surface tubing. It was found that the tetrary refrigerant blend has higher transfer coefficients than R-502, and the lowest pressure drop among the refrigerants studied. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this study is to determine the upper limitations of the particle volume fraction for heat transfer performance of TiO2–water nanofluids in microchannels. Nanofluids were prepared by the addition of TiO2 metallic nanoparticles into distilled water chosen as base fluid at five different volumetric ratios (0.25%, 0.5%, 1.0%, 1.5%, and 2.0%). The effects of the Reynolds number (100–750) and particle volume fraction at constant microchannel height (200 μm) on heat transfer and pressure drop characteristics were analyzed experimentally. Adding metallic oxide particles with nano dimensions into the base fluid did not cause excessive increase of friction coefficient but provided higher heat transfer than that of pure water. It was also observed that water–TiO2 nanofluid increased heat transfer up to 2.0 vol%, but heat transfer decreased after 2.0 vol%. Furthermore, the thermal resistance was calculated and it was seen that adding nanoparticles with an average diameter smaller than 25 nm into the base fluid caused the thermal resistance to decrease.  相似文献   

18.
In order to investigate the effect of surface wettability on the pool boiling heat transfer, nucleate pool boiling experiments were conducted with deionized water and silica based nanofluid. A higher surface roughness value in the range of 3.9 ~ 6.0μm was tested. The contact angle was from 4.7° to 153°, and heat flux was from 30kW/m2 to 300kW/m2. Experimental results showed that hydrophilicity diminish the boiling heat transfer of silica nanofluid on the surfaces with higher roughness. As the increment of nanofluid mass concentration from 0.025% to 0.1%, a further reduction of heat transfer coefficient was observed. For the super hydrophobic surface with higher roughness (contact angle 153.0°), boiling heat transfer was enhanced at heat flux less than 93 kW/m2, and then the heat transfer degraded at higher heat flux.  相似文献   

19.
The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are investigated to determine the important parameters' effects on the heat transfer coefficient and also to have reliable empirical correlations based on the neural network analysis. Nanofluids with various concentrations of 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. The horizontal circular test plate, made from copper with different roughness values of 0.2, 2.5 and 4 μm, is used as a heating surface. The artificial neural network (ANN) training sets have the experimental data of nucleate pool boiling tests, including temperature differences between the temperatures of the average heater surface and the liquid saturation from 5.8 to 25.21 K, heat fluxes from 28.14 to 948.03 kW m− 2. The pool boiling heat transfer coefficient is calculated using the measured results such as current, voltage, and temperatures from the experiments. Input of the ANNs are the 8 numbers of dimensional and dimensionless values of the test section, such as thermal conductivity, particle size, physical properties of the fluid, surface roughness, concentration rate of nanoparticles and wall superheating, while the outputs of the ANNs are the heat flux and experimental pool boiling heat transfer coefficient from the analysis. The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are modeled to decide the best approach, using several ANN methods such as multi-layer perceptron (MLP), generalized regression neural network (GRNN) and radial basis networks (RBF). Elimination process of the ANN methods is performed together with the copper and aluminum test sections by means of a 4-fold cross validation algorithm. The ANNs performances are measured by mean relative error criteria with the use of unknown test sets. The performance of the method of MLP with 10-20-1 architecture, GRNN with the spread coefficient 0.7 and RBFs with the spread coefficient of 1000 and a hidden layer neuron number of 80 are found to be in good agreement, predicting the experimental pool boiling heat transfer coefficient with deviations within the range of ± 5% for all tested conditions. Dependency of output of the ANNs from input values is investigated and new ANN based heat transfer coefficient correlations are developed, taking into account the input parameters of ANNs in the paper.  相似文献   

20.
A study of evaporative cooling of water was conducted using dual-scale hierarchically porous aluminum coating. The coating was created by brazing aluminum powders to a flat aluminum plate. The effects of particle size and thickness on evaporative heat transfer were investigated using average aluminum particle diameters of 27, 70, and 114 µm and average coating thicknesses of 560, 720, and 1200 µm. Constant ambient temperature of 24°C and relative humidity of 50% were provided throughout the study. Evaporative cooling tests on the coated surfaces were compared to the plain surface. Tested dual-scale porous coatings enhanced evaporative heat transfer significantly, compared to that of the plain surface, due to the effective wicking of water to the entire heated area. With particle size increase, both the wickability and dryout heat flux were significantly increased. The dryout heat flux with the particle size of 114 µm was 3.2 times higher than that with the particle size of 27 µm. At the fixed particle size of 70 µm the dryout heat flux increased as thickness increased, which resulted in the maximum dryout heat flux of 10.6 kW/m2 and the maximum heat transfer coefficient of 251 W/m2K at the coating thickness of 1200 µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号