首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《分离科学与技术》2012,47(1):186-198
ABSTRACT

A biosorbent material based on tilapia scales for the removal of Cu(II) ions was investigated. Modifications in the biosorbent caused by retention of Cu(II) and by the pH effect were evaluated separately in order to comprehend how the removal process occurs. For that, a physico-chemical characterization of the scales was performed before and after the Cu(II) removal. The results obtained from the characterization and biosorption tests led to the conclusion that the Ca–Cu ions exchange was responsible for purifying the solution. Furthermore, the tilapia scales were efficient, removing 95% of Cu(II) with 1 g of adsorbent (surface area ≈ 3 m2).  相似文献   

2.
3.
A novel nanometer-sized chelating resin (NSCR) was prepared via two steps, First step: copolymerization reaction of N-methacryloxyphtalimide (NMP) with methylenebisacrylamide (MBA) by suspension polymerization method to give ultrafine poly (NMP-co-MBA). Second step: reaction of triethylenetetramine (TETA) with poly (NMP-co-MBA) to give NSCR. The prepared NSCR was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Brunauer-Emmett-Taller (BET) and thermogravimetric analysis (TGA). This study illustrated the capability of NSCR for extraction of Cu(II), Co(II) and Ni(II) from aquatic solutions. The pH effect, metal ions concentration, temperature and contact time were elaborated in batch experiments. The results showed that high capacities were 1.3, 1.0 and 0.95 mmol/g resin for Cu(II), Ni(II) and Co(II) ions, respectively. The experimental data of adsorption isotherms were convenient for Langmuir isotherm, and the kinetic data illustrated that the removal process was described by pseudo-second order kinetic model. The parameters of Thermo dynamic illustrated that the process of adsorption was endothermic and spontaneous reaction. The prepared NSCR was regenerated and used repetitively for five times with small decrease in adsorption capacity.  相似文献   

4.
Strong‐field ligands (amino moieties) are introduced into a hydrogel resin to obtain a chelating resin via inversion suspension polymerization. The characteristics of chelating copolymers are measured by using Fourier transform IR spectroscopy (FTIR), elemental analysis (EA), and scanning electron microscopy (SEM). After chelating copolymers adsorb cupric ions, the absorption peak of stretch N? H is shifted to higher frequency because of a coordination reaction from the FTIR spectra. Furthermore, the mechanism of metal complex adsorption on the chelating copolymer is that the strong‐field chelating ligand decomposes the bonding of the metal complexes and recoordinates the cupric ion to a chelating polymer, which is examined via FTIR, SEM with EA, and ionic chromatography analysis. The maximum adsorption capacity of cupric ions is 1.08 mmol/g and the adsorption capacity increases with the increase of the pH of the solution. The stability constant of the Cu chelating copolymer is 1018.72, and it can have competition adsorption with EDTA in aqueous solution. These amino chelating copolymers can be used not only to recover metal ions but also to move anion pollution in wastewater. It is interesting that parts of the cupric ions adsorbed on the chelating copolymer are reduced into cupreous ions and/or copper atoms after electron spectroscopy for chemical analysis measurement. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2457–2468, 2005  相似文献   

5.
In the present study, hexagonal boron nitride (h-BN) was synthesized from boric acid and melamine by thermal annealing method in a nitrogen atmosphere. The pure h-BN was used as an efficient sorbent for the uptake of Cd2+ ions from the solution phase. The kinetics and sorption studies of metal ions onto the h-BN were carried out in batch adsorption experiments at different temperature, time, pH, sorbent dosage, and concentration of metal ions. The optimum pH for the removal of the Cd2+ ions was found to be pH 7. The effect of temperature showed that the process of Cd2+ sorption remained endothermic in the range of 298 K–328 K. The Lagergren's first and Ho's second kinetic models were tested to interpret the adsorption kinetic data, however the present data was explained well by Ho's model for kinetics. The thermodynamic perameters ΔG, ΔS and ΔH were determined using the available adsorption data at different temperatures. The physicochemical properties of the synthesized product were also characterized before and after adsorption by different analytical techniques like FT-IR, TGA, XRD and Point of Zero Charge (PZC). The morphology of the surface was analyzed with the help of Scanning Electron Microscopy. The h-BN proved to be an efficient adsorbent for the uptake of the Cd2+ ions from aqueous media.  相似文献   

6.
A series of novel coumarin dyes (3-12) were designed and synthesized. The structures of the dyes were characterized by IR, 1H NMR, 13C NMR, 19F NMR, MS and single crystal X-ray diffraction. 3-(2-Benzoylhydrazonotrifluoroethyl)-7-(N,N-diethylamino)coumarin (11) could recognize Cu2+ and Ni2+ selectively in aqueous solution. Upon addition of Cu2+ or Ni2+ to 11 a blue shift or a bathochromatic shift of the absorption band was observed while the emission band blue-shifted with decrease in the fluorescence intensity. Upon addition of Cu2+ the color of the solution of 11 changed from orange to red. The results showed that 11 could be used as an optical chemosensor of Cu2+ and Ni2+.  相似文献   

7.
《分离科学与技术》2012,47(18):2870-2881
ABSTRACT

The present work aims to prepare an ecofriendly and effective material for adsorption of heavy metals, especially iron and manganese from polluted water. Chitosan nanoparticles were prepared from the extracted chitosan of shrimp shells waste using a traditional ionic gelation method in presence of sodium tripolyphosphate as a cross-linker. To confirm the polymer structure and its characteristics, the prepared nanoparticles were characterized using FT-IR, X-Ray diffraction, TEM and SEM. Molecular weight, the degree of de-acetylation, ash content, particle size and zeta potential values were 3923 D, 75 %, 4 %, 331 nm and +38 mv, respectively. A batch equilibrium experiments were carried out to evaluate the chitosan nanoparticles as adsorbents of Fe (II) and Mn (II) ions from aqueous solutions. The removal efficiency and adsorption capacity were studied at different contact times, pH of the sorption medium, and initial metal ion concentration in the feed solution. The removal efficiency and maximum adsorption capacity of Fe (II) and Mn (II) were 99.8, 116.2 mg/g and 95.3%, 74.1mg/g, respectively. From the adsorption isotherm and kinetic studies, it was found that the Langmuir and the pseud-second order models, respectively, were more fitted in this study.  相似文献   

8.
The structure of the bromate-oxidized wheat starch (OS) contains partly opened glucose units with carbonyl and carboxyl groups at C2-, C3- or C6-positions. OS with a variable degree of oxidation (DO) was studied in alkaline conditions as a water-soluble complexing agent for Fe(III), Cu(II), Ni(II) and Zn(II) ions, which are common in various wastewaters. Complexation was studied by inductively coupled plasma-optical emission spectrometry (ICP–OES) in a single metal ion or multi-metal ion solutions. The DO affected the efficiency of the complexation with metal ions. OS with the high DO (carboxyl and carbonyl DO of 0.72 and 0.23, respectively) complexed and held Fe(III) or Zn(II) ions in a soluble form effectively in 0.5 mM single ion alkaline solution with the molar ratio of 0.65:1 of oxidized starch-to-metal ion (OS-to-M). The OS-to-M molar ratio of 1.3:1 was required to form a soluble complex with Cu(II) or Ni(II) ions. These complexes were thermally stable at the temperature range of 20–60 °C. OS with the low DO (carboxyl and carbonyl DO 0.47 and 0.17, respectively) complexed Zn(II) ions highly, Cu(II) and Ni(II) ions poorly and Fe(III) ions only partly. In the multi-metal ion solution of OS the solubility of these metal ions improved with the increasing DO of starch, which followed the same tendency as was observed in the single metal ion systems. The increased molar ratio of OS-to-M improved the complexation and solubility of the metal ions in all multi-metal ion series. As the soluble multi-metal ion complexes were reanalyzed after 7 days, all solutions had kept the high complexation and solubility of metal ions (ca. 90%). Complexation by OS did not show a selective binding of the ions in the multi-metal ion solution. It was concluded that the flexible, opened ring structure units of OS prevented the selective binding to metal ions but made the complexes highly stable. Titrimetric studies of OS–Fe(III) complexation showed that each anhydroglucose unit of OS had more than one coordination site and as the content of OS increased, the free sites coordinated to Fe(III) ions and formed cross-linked starch structures.  相似文献   

9.
Instantaneous and equilibrium metal uptake performance of Rhizopus arrhizus was studied using aqueous solutions containing Cr(VI), Cu(II), and Cd(II) ions in ternary mixtures. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the values of the equilibrium constants and the maximum capacities for the metals differed for each system. For that reason, the ternary biosorption equilibria of Cr(VI), Cu(II), and Cd(II) ions with R. arrhizus were further investigated by using the multicomponent Freundlich model. From the equations of the multicomponent Freundlich model, three-dimensional (3-D) biosorption isotherm surfaces were simulated depicting the equilibrium behavior of the three-metal system.  相似文献   

10.
Mesoporous activated carbon (surface area of 608 m2/g) has achieved high efficiency in removal of cadmium, mercury and zinc ions from water solution. The proposed low-cost adsorbent was physically activated with water steam from the bamboo species Bambusa vulgaris striata. The batch studies suggested an activated carbon dose of 0.6 g/L, solution pH of 9 and an equilibrium time of 16 h in static conditions. The pseudo-second order equations represented the adsorption kinetics with high correlation. Fitting of the experimental results to the Langmuir, Freundlich, Redlich–Peterson and Toth isotherm models showed an almost homogeneous surface coverage and presence of physical adsorption. The highest adsorption capacities, calculated from the Langmuir model, are 239.45, 248.05 and 254.39 mg/g of cadmium, mercury and zinc, respectively.  相似文献   

11.
New polymeric structures obtained by chemical transformations of maleic anhydride/dicyclopentadiene copolymer with triethylenetetraamine, p‐aminobenzoic acid, and p‐aminophenylacetic acid were used for the removal Cu(II) ions from aqueous solutions. The experimental values prove the importance of the chelator nature and of the macromolecular chain geometry for the retention efficiency. The retention efficiency (ηr), the retention capacity (Q e ), and the distribution coefficient of the metal ion into the polymer matrix (K d ) are realized by evaluation of residual Cu(II) ions in the effluent waters, by atomic adsorption. Also are discussed the influence of pH, the thermal stability of the polymer, and their polymer–metal complex, as well as the particular aspects regarding the contact procedure and the batch time. Based on the polymers and polymer–metal complexes characterization a potential retention mechanism is proposed. All polymer supports as well theirs metal–complexes are characterized by ATD and FTIR measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1397–1405, 2007  相似文献   

12.
The walnut shell supported nanoscale zero‐valent iron (walnut‐nZVI) was prepared from sodium borohydride, iron(II) chloride tetrahydrate, and walnut shell by liquid phase chemical reduction and characterized by FTIR, TEM, and XRD. The composites were tested as adsorbent for the removal of Cu(II) or Ni(II) ions. The equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich, which revealed that Langmuir isotherm was more suitable for describing Cu(II) and Ni(II) ions adsorption than the other two isotherm models. The results indicated that the maximum adsorption capacity was higher than some other modified biomass waste adsorbents under the proposed conditions, were 458.7, 327.9 mg g?1 for Cu(II) or Ni(II). The adsorption kinetics data indicated that the adsorption fitted well with the pseudo‐second‐order kinetic model. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43304.  相似文献   

13.
A high-surface-area activated carbon was prepared by chemical activation of Glycyrrhiza glabra residue with ZnCl2 as active agent. Then, the adsorption behavior of Pb(II) and Ni(II) ion onto produced activated carbon has been studied. The experimental data were fitted to various isotherm models. According to Langmuir model, the maximum adsorption capacity of Pb(II) and Ni(II) ions were found to be 200 and 166.7 mg g−1, respectively, at room temperature. Kinetic studies showed the adsorption process followed pseudo second-order rate model. High values of intra-particle rate constants calculated shows the high tendency of activated carbon for removal of Pb(II) and Ni(II) ions.  相似文献   

14.
The aim of this research was to prepare magnesium ferrite (MgFe2O4) magnetic nanoparticles and to investigate their sorption characteristics towards Mn2+, Co2+, Ni2+, Cu2+ ions in aqueous solution. MgFe2O4 was synthesized by glycine-nitrate combustion method and was characterized by low crystallinity with crystallite size of 8.2?nm, particle aggregates of 13–25?nm, BET surface area of 14?m2/g and pore size of 8.0?nm. Sorption properties of MgFe2O4 towards Mn2+, Co2+, Ni2+, Cu2+ ions were studied using one-component model solutions and found to be dependent on metal ions concentration, contact time, pH and conditions of regeneration experiment. The highest sorption capacity of MgFe2O4 was detected towards Co2+ (2.30?mmol?g1) and Mn2+ (1.56?mmol?g?1) and the lowest towards Ni2+ (0.89?mmol?g?1) and Cu2+ (0.46?mmol?g?1). It was observed that sorption equilibrium occurs very quickly within 20–60?min. The pHzpc of sorbent was calculated to be 6.58. At studied pH interval (3.0–7.0) the sorption capacity of MgFe2O4 was not significantly affected. Regeneration study showed that the metal loaded sorbent could be regenerated by aqueous solution of 10?3 M MgCl2 at pH 6.0 within 120?min of contact time. Regeneration test suggested that MgFe2O4 magnetic sorbent can be efficiently used at least for four adsorption-desorption cycles. The high sorption properties and kinetics of toxic metal ion sorption indicates good prospects of developed sorbent in practice for wastewater treatment.  相似文献   

15.
Acrylamide-maleic acid (AAM-MA) hydrogels having high acid group content prepared with different maleic acid ratios were used for the removal of Cu(II) and Pb(II) ions from aqueous solutions in competitive and noncompetitive conditions. The effects of pH, time, and initial metal ion concentration on the metal ion adsorption capacity were investigated. The adsorption isotherm models were applied on experimental data and it is shown that the Freundlich equation was the best model for Cu(II) ion while the Langmuir isotherm model was the best one for Pb(II) ion. The stability constants of acrylamide-maleic acid hydrogel-Cu(II) and Pb(II) complexes were also determined by van den Berg/Ruzic transformation, and K values obtained were 1.60 × 103 and 1.81 × 103 for Cu(II) and Pb(II) ions, respectively. The experiments under competitive conditions showed that the hydrogels prefered Pb(II) ion and this preference increased with increasing of carboxylic acid group content (AGC) of polymers. It is stated that these hydrogels can be regenerated efficiently (>95%) and used repeatedly.  相似文献   

16.
A chemosensor based on rhodamine B with 1, 2, 4-triazole as subunit was synthesized and characterized. It exhibits high selectivity and sensitivity for Cu2+ in ethanol/water (6:4, v:v) of pH 7.0 HEPES buffer solution and undergoes ring opening mechanism, and a 2:1 metal-ligand complex is formed. The chemosensor displays a linear response to Cu2+ in the range between 1.0 × 10−7 M and 1.0 × 10−6 M with a detection limit of 4.5 × 10−8 M. Its capability of biological application was also evaluated and the results show that this chemosensor could be successfully employed as a Cu2+-selective chemosensor in the fluorescence imaging of living cells.  相似文献   

17.
The field of drug delivery focuses primarily on delivering small organic molecules or DNA/RNA as therapeutics and has largely ignored the potential for delivering catalytically active transition metal ions and complexes. The delivery of a variety of transition metals has potential for inducing apoptosis in targeted cells. The chief aims of this work were the development of a suitable delivery vector for a prototypical transition metal, Cu2+, and demonstration of the ability to impact cancer cell viability via exposure to such a Cu-loaded vector. Carboxylate-functionalized nanoparticles were synthesized by free radical polymerization and were subsequently loaded with Cu2+ via binding to particle-bound carboxylate functional groups. Cu loading and release were characterized via ICP MS, EDX, XPS, and elemental analysis. Results demonstrated that Cu could be loaded in high weight percent (up to 16 wt.%) and that Cu was released from the particles in a pH-dependent manner. Metal release was a function of both pH and the presence of competing ligands. The toxicity of the particles was measured in HeLa cells where reductions in cell viability greater than 95% were observed at high Cu loading. The combined pH sensitivity and significant toxicity make this copper delivery vector an excellent candidate for the targeted killing of disease cells when combined with an effective cellular targeting strategy.  相似文献   

18.
A synthetic molecularly imprinted polymer (MIP) was prepared by noncovalent imprinting technique for the selective removal of Cu2+ from aqueous solutions. In the preparation of imprinted polymer, Cu2+ was used as the template, oleic acid as the functional monomer and divinylbenzene as the cross-linker. The surface morphologies and characteristics of the MIP were determined by BET, scanning electron microscopy (SEM), FTIR and energy dispersive X-ray spectrometer (EDS). The proper adsorption and selective recognition ability of the MIP were studied by an equilibrium-adsorption method. In general, the removal efficiency of Cu2+ increased rapidly with pH from 2 to 7 and decreased at a pH 8. The removal efficiency of Cu2+ increased with temperature from 25°C to 50°C. Competitive adsorption studies showed that the coexisting cations have no obvious influence on the adsorption of Cu2+. In addition, the variation in the adsorption ability of the MIP that was repeatedly used was investigated, and it showed excellent reproducibility.  相似文献   

19.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

20.
A novel Hg(II) ion‐imprinted resin based on thiourea‐modified melamine was manufactured for selective elimination of Hg2+ from aqueous solutions. The polymerizable thiourea–melamine ligand together with its Hg(II) complex were extensively investigated using elemental analysis, Fourier transform infrared (FTIR) and 1H NMR spectroscopies. The Hg(II) complex was used in a condensation polymerization in the presence of formaldehyde crosslinker and then the Hg(II) ions were leached out from the crosslinked polymeric network to finally leave the ion‐imprinted Hg‐PMTF resin. Both ion‐imprinted Hg‐PMTF and non‐imprinted resins were examined utilizing scanning electron microscopy and FTIR spectroscopy. The potential of the prepared resin for selective separation of Hg(II) ions from aqueous solutions was then evaluated by performing a series of batch experiments. Hg‐PMTF displayed an obvious rapid removal of Hg(II) ions with a pseudo‐second‐order kinetic pattern. In addition, the Langmuir adsorption isotherm model exhibited the best fit with the experimental data with comparatively high maximum adsorption capacity (360.5 mg g?1). © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号