首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

The present work describes a remarkable synthetic interest of semiconducting core-shell nanocomposites (CSNCs) contained aluminum oxide. Al2O3@terpoly(aniline, anthranilic acid, and o-phenylenediamine) (Al2O3/PANI-AA-o-PDA) CSNCs were fabricated by the fivefold molar ratio of the appropriate moieties with various quantities of γ-Al2O3 by oxidative polymerization. The formation of the Al2O3/PANI-AA-o-PDA CSNCs was confirmed by spectral characteristics. The feature of CSNCs is core-shell nano-rods structure with sizes 19–39 nm. The recorded σdc is 8.8 × 10?9-4.8 × 10?8 Ω?1 m?1 being in the range of semiconductor materials at room temperature and increases with increasing temperature. The newly fabricated materials were investigated as antimicrobial agents. The setup presents a facile, cheap, novel and beneficial methodology to develop novel CSNCs acquiring the required numerous functionality.  相似文献   

2.
The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was employed to create a high-gravity environment in order to enhance ozone-liquid mass transfer rate and possibly improve the degradation rate of o-PDA. The degradation efficiency of o-PDA(η) as well as the overall gas-phase volumetric mass transfer coefficient(KGa) were determined under different operating conditions of H_2O_2 concentration, initial o-PDA concentration, temperature of reaction, initial p H and rotation speed of RSR in attempt to establish the optimal conditions. Chemical oxygen demand reduction rate(rCOD) of wastewater treated at a particular set of conditions was also analyzed. Additionally, the intermediate products of degradation were identified using a gas chromatography-mass spectrometer(GC/MS) to further evaluate the extent of o-PDA degradation as well as establish its possible degradation pathway. Results were validated by comparison with those of sole use of ozone(O_3 process), and it was noted that η, KGa and rCODachieved by O_3/H_2O_2 process was 24.4%,31.6% and 25.2% respectively higher than those of O_3 process, indicating that H_2O_2 can greatly enhance ozonation of o-PDA. This work further demonstrates that an RSR can significantly intensify ozone-liquid mass transfer rate and thus provides a feasible intensification means for the ozonation of o-PDA as well as other recalcitrant organics.  相似文献   

3.
The poly(acrylic acid) was used as dispersant to prepare aqueous TiO2/poly(acrylic acid) suspensions. The poly(acrylic acid) was adsorbed on the surface of the TiO2 particles. The zeta potential of the TiO2 particles in TiO2/poly(acrylic acid) suspensions was higher than that of the TiO2 particles in TiO2 suspensions, and the zeta potential of the TiO2 particles increased with increasing poly(acrylic acid) content. At the same shear rate, the viscosity of TiO2/poly(acrylic acid) suspensions was lower than that of TiO2 suspensions, and the liquidity was improved. The dispersion of TiO2 particles in TiO2/poly(acrylic acid) suspensions was improved compared with that of TiO2 particles in TiO2 suspensions.  相似文献   

4.
《分离科学与技术》2012,47(7):1525-1543
Abstract

In this study, TiCl4 coagulant together with coagulant aids such as FeCl3, Al2(SO4)3, and Ca(OH)2 were investigated to improve the photoactivity of titanium dioxide (TiO2) produced from sludge and to increase the resulting low pH value. After TiCl4 flocculation with three coagulant aids, the settled floc (sludge) was incinerated at 600°C to produce TiO2 doped with Fe, Al, and Ca elements. Fe-, Al-, and Ca-doped TiO2 was characterized in terms of structural, chemical, and photo-electronic properties. All the coagulant aids used together with Ti-salt flocculation effectively increased the pH values. The surface area of TiO2-WO (without any coagulant aids), Fe/TiO2, Al/TiO2, and Ca/TiO2 was 122 m2/g, 77 m2/g, 136 m2/g and 116 m2/g, respectively. The TiO2-WO, Fe/TiO2, Al/TiO2, and Ca/TiO2 was found to be of anatase phase. The XRD pattern on the Fe/TiO2 included an additional peak of hematite (α-Fe2O3). The majority of gaseous acetaldehyde with TiO2-WO and Ca/TiO2 for photocatalytic activity was completely removed within 40 minutes under UV irradiation.  相似文献   

5.
Abstract

The narrowly dispersed functional silica/poly(di(metacryloylooxy-1-ethoxy) methane-co-acryl amide) (SiO2/P(DMOEM-co-AAm)) core-shell microspheres were synthesized by distillation precipitation polymerization of DMOEM as a degradable crosslinker and AAm as a functional monomer with the presence of 3-(methacryloxy)propyltrimethoxysilane (MPS) modified silica microspheres as seeds. Indole-3-acetic acid (IAA) can be efficiently loaded into the microspheres with a loading capacity of 37.5% via hydrogen-bonding interaction between the carboxylic acid group of IAA and the amide groups on the surface of SiO2/P(DMOEM-co-AAm). The loaded IAA can be triggered released by pH due to the presence of pH-responsive crosslinker (DMOEM).  相似文献   

6.
Mesoporous TiO2 was prepared by simply controlling the hydrolysis of Ti(OBu)4 with the help of acetic acid. The mesoporous TiO2 had a well-crystallized anatase phase and a high surface area of 290 m2 g−1 with a pore size of about 4 nm. The anatase phase and the mesoporous structure were maintained in the VOx/TiO2 catalyst with a monolayer dispersion of V2O5, however, the surface area decreased to 126 m2 g−1. The catalyst was highly active and selective for methanol oxidation, giving about 55% conversion of methanol and 85% selectivity to dimethoxymethane at 423 K.  相似文献   

7.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   

8.
Zirconia-supported and bulk-mixed vanadiumantimonium oxide catalysts were used for the oxidation of o-xylene to phthalic anhydride. X-ray diffraction, Raman spectroscopy and photoelectron spectroscopy were used for characterization. It was found that vanadium promotes the transition of tetragonal to monoclinic zirconia. The simultaneous presence of Sb and V on zirconia at low coverage led to a preferential interaction of individual V and Sb oxides with the zirconia surface rather than the formation of a binary Sb-V oxide, while at higher Sb-V contents the formation of SbVO4 took place. Sb-V/ZrO2 catalysts showed high activity for o-xylene conversion and better selectivity to phthalic anhydride as compared to V/ZrO2 catalysts. However, their selectivity to phthalic anhydride was poor in comparison to a V/TiO2 commercial catalyst. The improved selectivity of the Sb-containing catalysts is attributed to the blocking of non-effective surface sites of ZrO2, the decrease of the total amount of acid sites and the formation of surface V-O-Sb-O-V structures.  相似文献   

9.
H2La2Ti3O10/ TiO2 intercalated nanomaterial was fabricated by successive intercalation reactions of H2La2Ti3O10 with n-C6H13NH2/C2H5OH mixed solution and acid TiO2 sol, followed by irradiating with a high-pressure mercury lamp. The intercalated materials possess a gallery height of 0.46 nm and a specific surface area of 31.58 m2·g−1, which indicate the formation of a porous material. H2La2Ti3O10/TiO2 shows photocatalytic activity for the decomposition of organic dye under irradiation with visible light and the activity of TiO2 intercalated material was superior to the unsupported one.  相似文献   

10.
Synthesis and Photocatalytic Activity of Titania Pillared Clays   总被引:13,自引:0,他引:13  
TiO2-pillared clays such as montmorillonite, saponite and mica were prepared with an intercalation of polynuclear titanium complex formed by the reaction of Ti(i-C3H7O)4 and acetic acid. Characterization of the products was performed by XRD, XPS, IR, UV-V spectra, the measurement of surface area and pore size distribution. The photocatalytic decomposition of carboxylic acids has been studied on TiO2-pillared montmorillonite, saponite and mica. TiO2-pillared mica showed higher catalytic activity than TiO2 for the photocatalytic decomposition of acetic acid and adipic acid. On the contrarily, TiO2 was the most active catalyst and TiO2-pillared mica showed low activity for the photocatalytic decomposition of capric acid. The results show that the molecular size of carboxylic acid contributes to the catalytic activity of TiO2-pillared clays.  相似文献   

11.
In this study, TiO2 nanoparticles were incorporated into low-density polyethylene by melt blending. Morphological properties and dispersion behavior of TiO2 nanocomposite were characterized through field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. Thermal stability of the nanocomposites was determined by thermogravimetric analysis. Moreover, the mechanical properties of nanocomposites were determined. Antimicrobial activity of TiO2 nanocomposites was investigated by in vitro test. Dispersion of the nanoparticles was good in nanocomposites. According to thermogravimetric analysis, incorporation of TiO2 nanoparticles into low-density polyethylene enhanced the thermal stability. Mechanical properties of nanocomposites were improved by TiO2 nanoparticles. Results showed that the antibacterial effect of low-density polyethylene –TiO2 nanocomposite was significantly enhanced by TiO2nanoparticles (p?2 nanoparticles not only can improve the properties of low-density polyethylene but they also have the potential to be used as an active food packaging film.  相似文献   

12.
TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm. The TeO2/CuO core-shell one-dimensional (1D) nanostructures exhibited a bamboo leaf-like morphology. The core-shell nanorods were 100 to 300 nm in diameter and up to 30 μm in length. The multiple networked TeO2/CuO core-shell nanorod sensor showed responses of 142% to 425% to 0.5- to 10-ppm NO2 at 150°C. These responses were stronger than or comparable to those of many other metal oxide nanostructures, suggesting that TeO2 is also a promising sensor material. The responses of the core-shell nanorods were 1.2 to 2.1 times higher than those of pristine TeO2 nanorods over the same NO2 concentration range. The underlying mechanism for the enhanced NO2 sensing properties of the core-shell nanorod sensor can be explained by the potential barrier-controlled carrier transport mechanism.

PACS

61.46. + w; 07.07.Df; 73.22.-f  相似文献   

13.
Information concerning the oxidation of o-xylene and naphthalene, the two main processes for producing phthalic anhydride, is updated and analyzed. New techniques for the preparation of catalysts, all based in the impregnation method and involving the control of parameters such as pH and ionic strength of solutions, are described; the performance of the resulting catalysts is compared with that of catalysts prepared by other methods. Sulfur-containing substances and promoters such as Ag, P, Nb, and Sb have been shown to enhance catalyst performance; studies of their effect on the surface area, acidic properties, and stabilization of the oxidation state of vanadium in supported V2O5 catalysts are described.

The latest attempts to correlate the physicochemical characteristics of the catalysts with their catalytic features are analyzed. FTIR, Raman spectroscopy, adsorption of bases, 51V-NMR, XRD, XPS, SIMS, and electrical conductivity have been used in the study of V2O5/TiO2 catalysts, allowing further understanding of the effects of the properties such as acidity and the state of oxidation of the surface. Particular emphasis has been given to the presence of VIV, which is thought to cause lower selectivity to phthalic anhydride.

For o-xylene oxidation, the formation of involatile by-products has been established as a secondary reaction, accounting for the poor carbon balances obtained under some experimental conditions. Involatile by-products, whose formation has been associated with the presence of strong acid sites, can adsorb on the catalyst surface, leading to deactivation, or undergo total combustion, acting as a source of CO2. Attempts to quantify and characterize those by-products are described.

The modeling of the reaction using both fixed- and fluidized-bed reactors, including the study of parameters such as the inlet temperature and the bath temperature, is analyzed. Models considering catalyst deactivation have been also developed; for o-xylene oxidation, deactivation has been associated with processes both reversible, such as changes in the oxidation state of vanadium, deposition of involatile compounds, and irreversible, such as structural changes, decrease in surface area, sintering, and variation of the promoter concentration at the catalyst surface.

The study of V2O5/TiO2 EUROCAT catalysts, involving a number of European laboratories, is reviewed, and their performance is compared with that of other V2O5/TiO2 catalysts.  相似文献   

14.
A conducting composite of polyaniline, poly(o-anisidine), and poly(aniline-co-o-anisidine) using incorporation of TiO2 and SiO2 was prepared by electrochemical polymerization. The films were electropolymerized in a solution containing 0.1 M monomer(s), 1 M sulfuric acid as supporting electrolyte, and 10?5 M TiO2 and SiO2 by applying a sequential linear potential scan rate of 50 mV/s between ? 0.2 and 1.0 V versus an Ag/AgCl electrode. The composites were characterized by cyclic voltametry, UV-visible spectroscopy, electrical conductivity, and thermogravimetric analysis. It was observed that the UV-visible peaks appeared in the region of the conducting emerladine salt phase. In an overall study, the polymers prepared using TiO2 had a higher conductivity than those prepared with SiO2; however, higher conductivity was observed for the polyaniline-TiO2 conducting composite than for the other polymers. The composites did not lose their color at higher temperature and hence can be utilized as the conductive pigments required for antielectrostatic applications.  相似文献   

15.
ABSTRACT

Novel tertiary nanocomposite films comprising of poly (vinyl alcohol) (PVA), poly (4-styrenesulfonic acid) (PSSA) and titanium dioxide (TiO2) nanoparticles (NPS) were prepared using simple solvent casting method. The structural, thermal, morphological, thermo-mechanical and electromagnetic interference (EMI) shielding properties of PVA/PSSA/TiO2 nanocomposite films were investigated. The EMI shielding effectiveness (SE) of PVA/PSSA/TiO2 nanocomposite films in the X and Ku band was found to be 12 dB and 13 dB respectively at 25 wt% TiO2 NPs loading. These results demonstrate the possible applications of PVA/PSSA/TiO2 nanocomposite films as low cost, lightweight and flexible material for EMI shielding.  相似文献   

16.
First principles calculations within density functional theory have been carried out to investigate the adsorptions of SOx (x?=?1, 2) molecules on TiO2/MoS2 nanocomposites in order to fully discover the gas sensing capabilities of TiO2/MoS2 composite systems. The van der Waals interactions were included to obtain the most stable geometrical structures of TiO2/MoS2 nanocomposites with adsorbed SOx molecules. SOx molecules preferentially interact with the doped nitrogen and fivefold coordinated titanium sites of the TiO2 anatase nanoparticles because of their higher activities in comparison with the other sites. The results presented include structural parameters such as bond lengths and bond angles and energetics of the systems such as adsorption energies. The variation of electronic structures are discussed in view of the density of states and molecular orbitals of the SOx molecules adsorbed on the nanocomposites. The results show that the adsorption of the SOx molecule on the N-doped TiO2/MoS2 nanocomposite is energetically more favorable than the adsorption on the undoped one, implying that the nitrogen doping helps to strengthen the interaction of SOx molecules with TiO2/MoS2 nanocomposites. These calculated results thus provide a theoretical basis for the potential applications of TiO2/MoS2 nanocomposites in the removal and sensing of harmful SOx molecules.  相似文献   

17.
Photocatalytic degradation of chloroacetic acids (ClAAs) over various bare and silver-deposited Degussa P25 TiO2 particles was studied. Adsorption measurements carried out using TiO2 photocatalysts of different origin demonstrated significant dependence of the adsorption efficiency on the nature of semiconductor particles and on the number of chlorine atoms of the substrate. Irradiation of the reaction mixtures containing monochloroacetic acid (MCA), dichloroacetic acid (DCA) and trichloroacetic acid (TCA), respectively, over P25 titania were performed under anaerobic and aerobic conditions. The progress of photocatalysis was followed by measuring the substrate concentration, the total organic carbon content (TOC) and the concentration of the chloride ion in the liquid phase of reaction mixtures. Opposite trends in the photodecomposition rate of the substrates were obtained for aerobic vMCAvDCA>vTCA and for anaerobic experiments vTCA>vDCA>vMCA, respectively. The evolved CO2 was also measured under aerobic photodecomposition of DCA. Important role of hydroxyl radicals in the photomineralization of mono- and dichloroacetic acid was confirmed by using coumarin (COU) as a hydroxyl radical scavenger and oxalic acid as an efficient scavenger for holes. Silver deposition onto the TiO2 surface enhanced the efficiency of the semiconductor by a factor of 4 for the photooxidation of TCA and by a factor of 1.4 for DCA and MCA.  相似文献   

18.
Titania derived nanotubes were synthesized by treating P-25 Degussa TiO2 with a concentrated (18 M) KOH solution. Ageing the material in KOH solution for 2 days resulted in formation of tubular titania and Raman analysis revealed that the material has a titanate structure. The synthesized material was used as a catalyst support for the hydrogenation of ortho-chloronitrobenzene (o-CNB) with Pd as the active phase. The vapour-phase hydrogenation of o-CNB was carried out in ethanol at 523 K and atmospheric pressure over a Pd/TiO2 derived nanotube catalyst (Pd/TiO2-M). Pd/TiO2-M gave complete conversion (100%) of o-CNB with the selectivity to ortho-chloroaniline (o-CAN) of 86%. The stability of the Pd/TiO2-M catalyst was tested over 5 h during which time the conversion slowly dropped to 80% (selectivity 93%) due to catalyst poisoning. TPR analysis revealed the existence of a strong palladium-support interaction and this was found to be crucial to the overall activity of the catalyst.  相似文献   

19.
In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating.  相似文献   

20.
SiO2–TiO2/montmorillonite composites were prepared under acidic, neutral and basic conditions and the solid acidity of the resulting composites were determined. All the SiO2/TiO2 ratio of the colloidal particles was set at 10 but the resulting SiO2/TiO2 ratios were significantly richer in TiO2. The XRD patterns of the acidic composite showed expanding and broadening of the (001) reflection by intercalation of colloidal SiO2–TiO2 particles, but the neutral and basic composites showed only broadening of the reflections and no intercalation. The specific surface areas of the acidic, neutral and basic composites (375, 237 and 247 m2/g, respectively) were much larger than of montmorillonite (6 m2/g). The average pore sizes were about 4, 15 and 50 nm, and the amounts of solid acidic sites measured by the NH3-TPD were 178, 95 and 86 µmol/g for the acidic, neutral and basic composites, respectively. The solid acid amount of the acidic composite was twice that of a commercial catalyst, K-10, (85 µmol/g) and much higher than the guest phase SiO2–TiO2 gel (16 µmol/g) or the host phase montmorillonite (6 µmol/g). The TPD peak temperatures reflect the acid strength, and were similar in all the samples, ranging from 175° to 200 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号