首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The appearance of undesirable bitter taste in Ragusano cheese was investigated by comparing the composition of 9 bitter cheeses with that of 9 reference cheeses of good quality by means of chemical, electrophoretic, and chromatographic analyses. Rates of proteolysis were significantly affected in cheeses of different quality. Primary proteolysis, as measured by pH 4.6-soluble N, was significantly greater in bitter cheeses compared with reference samples. Urea-PAGE profiles showed an almost complete breakdown of caseins in bitter cheeses and the further degradation of primary peptides into smaller compounds not detectable by this technique. Cheeses with defects had significantly lower levels of secondary proteolysis as reflected by the percentage of pH 4.6-soluble N soluble in 12% trichloroacetic acid and the amounts of total free amino acids. Peptides separated by reversed phase-HPLC revealed that the large and significant differences in peptide profiles of the soluble fractions between bitter and reference cheeses were mainly due to a much higher proportion of hydrophobic peptides in the former. The occurrence of bitterness in Ragusano cheese was therefore attributable to unbalanced levels of proteolysis and peptidolysis. Extensive degradation of caseins and primary peptides by activities of proteases produced large amounts of small- and medium-sized hydrophobic peptides that were not adequately removed by peptidases of microflora and therefore accumulated in cheese potentially contributing to its bitter taste. The presence of these compounds in bitter cheeses was related to high salt-in-moisture and low moisture contents that limited the enzymatic activities of microflora important in secondary proteolysis. Combining salt-in-moisture and the ratio of hydrophobic-to-hydrophilic soluble peptides resulted in the best logistic partial least squares regression model predicting cheese quality. Although bitterness is known to be rarely encountered in cheese at salt-in-moisture levels >5.0, all of the bitter cheeses analyzed in this study had salt-in-moisture levels much greater than this value. According to the logistic model, a risk of bitterness development may exist for cheeses with a midrange (5 to 10%) salt-in-moisture content but with an inadequate level of secondary proteolysis.  相似文献   

2.
The aim of this study was to provide the biochemical and structural characterization of Piacentinu Ennese cheese and to evaluate the impact of different farm technologies on cheese proteolysis and microstructure. Fifteen cheeses were manufactured according to traditional technology, i.e., from raw milk and farmhouse rennet in the absence of starter culture. Pasteurized milk, commercial rennet, and starter were used for production of 20 nontraditional cheeses. Proteolysis in Piacentinu Ennese cheese was monitored during a 2- to 10-mo ripening time. Low rates of overall proteolysis were observed in cheese, as percentages of total N soluble at pH 4.6 and in 12% trichloroacetic acid were about 11.40 and 8.10%, respectively, after 10 mo of age. Patterns of primary proteolysis by urea-PAGE showed that alpha(s)-caseins were degraded to a larger extent than were beta-caseins, although a considerable amount of both caseins was still intact after 10 mo. Reversed phase-HPLC analysis of the cheese peptide fractions showed a slow decrease in the levels of hydrophobic peptides coupled to increasing levels of hydrophilic compounds as the cheese aged. The structural characteristics of Piacentinu Ennese cheese were evaluated by scanning electron microscopy after 2, 4, and 6 mo of age. The micrographs showed a sponge-like structural network with a well-distributed system of empty spaces, originally occupied by whey and fat. The microstructure changed during cheese ripening to become more compact with cavities of smaller size. Farm technology significantly affected cheese proteolysis and microstructure. Nontraditional cheeses had higher levels of pH 4.6-soluble N and showed a larger hydrolysis of alpha(s)-casein fractions by urea-PAGE analysis than did traditional cheeses. Large differences between cheese-types also concerned the patterns of secondary proteolysis. Nontraditional cheeses had higher levels of 12% trichloroacetic acid-soluble N and showed larger proportions of free amino acids and hydrophilic peptides in the HPLC profiles of the corresponding 70% ethanol-soluble N fraction than traditional cheeses. Nontraditional cheeses also had a more open structure with a coarser and less continuous appearance than did traditional cheeses. A large amount of variability in cheese proteolysis and structure within nontraditional treatment reflected farm-dependent changes in manufacturing conditions related to the use of various types of rennet and starter.  相似文献   

3.
Turkish White-brined cheese was manufactured using Lactococcus strains (Lactococcus lactis ssp. lactis NCDO763 plus L. lactis ssp. cremoris SK11 and L. lactis ssp. lactis UC317 plus L. lactis ssp. cremoris HP) or without a starter culture, and ripened for 90 d. It was found that the use of starters significantly influenced the physical, chemical, biochemical, and sensory properties of the cheeses. Chemical composition, pH, and sensory properties of cheeses made with starter were not affected by the different starter bacteria. The levels of soluble nitrogen fractions and urea-PAGE of the pH 4.6-insoluble fractions were found to be significantly different at various stages of ripening. Urea-PAGE patterns of the pH 4.6-insoluble fractions of the cheeses showed that considerable degradation of αs1-casein occurred and that β-casein was more resistant to hydrolysis. The use of a starter culture significantly influenced the levels of 12% trichloroacetic acid-soluble nitrogen, 5% phosphotungstic acid-soluble nitrogen, free amino acids, total free fatty acids, and the peptide profiles (reverse phase-HPLC) of 70% (vol/vol) ethanol-soluble and insoluble fractions of the pH 4.6-soluble fraction of the cheeses. The levels of peptides in the cheeses increased during the ripening period. Principal component and hierarchical cluster analyses of electrophoretic and chromatographic results indicated that the cheeses were significantly different in terms of their peptide profiles and they were grouped based on the use and type of starter and stage of ripening. Levels of free amino acid in the cheeses differed; Leu, Glu, Phe, Lys, and Val were the most abundant amino acids. Nitrogen fractions, total free amino acids, total free fatty acids, and the levels of peptides resolved by reverse phase-HPLC increased during ripening. No significant differences were found between the sensory properties of cheeses made using a starter, but the cheese made without starter received lower scores than the cheeses made using a starter. It was found that the cheese made with strains NCDO763 plus SK11 had the best quality during ripening. It was concluded that the use of different starter bacteria caused significant differences in the quality of the cheese, and that each starter culture contributed to proteolysis to a different degree.  相似文献   

4.
A new salting procedure based on the brine vacuum impregnation of porous products was tested on Manchego-type cheese and compared with conventional brine immersion. Its effect on cheese proteolysis throughout a 90-d ripening period was determined. Three cheese regions were evaluated (the rind, the middle, and the internal regions). The parameters analyzed were total N, water-soluble N, soluble N in trichloroacetic acid and soluble N in phosphotungstic acid by using the Kjeldahl method, casein profile by urea-PAGE, and peptide profile of the water soluble nitrogen extract by reverse-phase HPLC. Free amino acid formation was monitored with a spectrophotometric method by using a Cd-ninhydrin reagent. Globally, proteolysis was significantly affected by ripening stage (increasing throughout all the maturation period studied) and cheese region (rind showed a proteolysis pattern different from the middle and internal regions). The salting procedure only affected cheese proteolysis in the rind, whereas conventional brine-salted cheeses showed lower proteolysis than vacuum-impregnated cheeses.  相似文献   

5.
The aim of this study was to determine ripening of cheese made from full concentrated (FC) milk retentate with and without peptidase addition. No free amino acids (FAAs) were found in FC cheese at the end of ripening. However, added peptidase increased FAA formation. Protein and peptide profile analysis showed that FAA and small peptides increased during ripening and therefore some secondary proteolysis occurred. Added peptidase increased D‐lactic acid formation during ripening of cheeses. This kind of changes in lactose fermentation should be considered during developing the making cheese with different enzyme addition.  相似文献   

6.
Ragusano cheese is a brine-salted pasta filata cheese. Composition changes during 12 mo of aging were determined. Historically, Ragusano cheese has been aged in caves at 14 to 16 degrees C with about 80 to 90% relative humidity. Cheeses (n = 132) included in our study of block-to-block variation were produced by 20 farmhouse cheese makers in the Hyblean plain region of the Province of Ragusa in Sicily. Mean initial cheese block weight was about 14 kg. The freshly formed blocks of cheese before brine salting contained about 45.35% moisture, 25.3% protein, and 25.4% fat, with a pH of 5.25. As result of the brining and aging process, a natural rind forms. After 12 mo of aging, the cheese contained about 33.6% moisture, 29.2% protein, 30.0% fat, and 4.4% salt with a pH of 5.54, but block-to-block variation was large. Both soluble nitrogen content and free fatty acid (FFA) content increased with age. The pH 4.6 acetate buffer and 12% TCA-soluble nitrogen as a percentage of total nitrogen were 16 and 10.7%, respectively, whereas the FFA content was about 643 mg/100 g of cheese at 180 d. Five blocks of cheese were selected at 180 d for a study of variation within block. Composition variation within block was large; the center had higher moisture and lower salt in moisture content than did the outside. Composition variation within blocks favored more proteolysis and softer texture in the center.  相似文献   

7.
Changes in nitrogen compounds during ripening of 40 batches of Manchego cheese made from raw milk (24 batches) or pasteurized milk (16 batches) at five different dairies throughout the year were investigated. After ripening for six months, degradation of p-kappa- and beta-caseins was more intense in raw milk cheese and degradation of alpha(s2)-casein in pasteurized milk cheese. Milk pasteurization had no significant effect on breakdown of alpha(s1)-casein. Hydrophobic peptide content did not differ between raw and pasteurized milk cheese, whereas hydrophilic peptide content was higher in raw milk cheese. There were no significant differences between seasons for residual caseins, but hydrophobic peptides were at a higher level in cheese made in autumn and winter and hydrophilic peptides in cheese made in winter and spring. Raw milk cheese had a higher content of total free amino acids and of most individual free amino acids than pasteurized milk cheese. The relative percentages of the individual free amino acids were significantly different for raw milk and pasteurized milk cheeses. The relative percentages of Lys and lie increased, while those of Val, Leu and Phe decreased during ripening. There were also seasonal variations within the relative percentages of free amino acids. In raw milk cheeses, Asp and Cys were relatively more abundant in those made in autumn, Glu and Arg in cheeses made in winter, and Lys and Ile in cheeses made in spring and summer. Biogenic amines were detected only in raw milk cheese, with the highest levels of histamine, tryptamine and tyramine in cheeses made in spring, winter and spring, respectively.  相似文献   

8.
Proteolysis of Mahon cheese as affected by acoustic-assisted brining   总被引:1,自引:0,他引:1  
 Mahon cheeses were brined in the presence of an ultrasonic field and ripened during 75 days at 12  °C and 85% RH. Secondary proteolysis (water-soluble N, non-protein N, and free amino acids) was measured and compared to that obtained for cheeses conventionally brined. There were no differences in water-soluble and non-protein N attributable to the brining treatment. However, cheeses acoustically brined exhibited higher concentrations of free amino acids. The release of total free amino acids was more pronounced during the first 15 days of ripening for both types of brining treatments. The changes in proteolysis (free amino acids) during cheese ripening caused by acoustic-assisted brining are indicative of a higher extent of proteolysis and may also improve cheese flavor. Received: 13 March 2000  相似文献   

9.
The influence of temperature (12, 15, 18, 21, and 24 degrees C) of saturated brine on lipolysis and proteolysis in 3.8-kg blocks of Ragusano cheese during 24 d of brining was determined. Twenty-six 3.8-kg blocks were made on each day. The cheese making was replicated on 3 different days. All blocks were labeled and weighed prior to brining. One block was sampled and analyzed prior to brine salting. Five blocks were placed into each of 5 different brine tanks at different temperatures. One block was removed from each brine tank after 1, 4, 8, 16, and 24 d of brining, weighed, sampled, and analyzed. Both proteolysis and lipolysis in Ragusano cheese increased with increasing brine temperature (from 12 to 24 degrees C), with the impact of brine temperature on proteolysis and lipolysis becoming progressively larger. Proteolysis was highest in the interior of the blocks where salt in moisture content was lowest and temperature had more impact on proteolysis in the interior position of the block than the exterior position. However, the opposite was true for lipolysis. The total free fatty acid content was higher and temperature had more impact on lipolysis at the exterior position of the block where salt in moisture was the highest. This effect of increased salt concentration on lipolysis was confirmed with direct salted cheeses in a small follow-up experiment. Lipolysis increased with increasing salt in the moisture content of the direct salted cheeses. It is likely that migration of water-soluble FFA from the brine into the cheese and from the interior portion of the cheese to the exterior portion of the cheese also contributed to a higher level of FFA at the exterior portion of the blocks. As brine temperature increased the profile of individual free fatty acids released from triglycerides changed, with the proportion of short-chain free fatty acids increasing with increasing brine temperature. This effect was largest at high salt in moisture content.  相似文献   

10.
The objective of this study was to determine the gross composition, proteolysis, and volatile and texture profiles during ripening of industrial (IND) and traditional (TRD) Beaten (Bieno sirenje) cheeses made by using ewe milk. In the course of the analyses, statistical differences were determined in some physicochemical parameters, nitrogen fractions, and total free amino acid levels between TRD and IND types of cheese. Higher levels of proteolysis were observed in IND cheeses than in TRD cheeses during ripening. Levels of residual β- and αs-caseins were 72.2 and 48.7%, respectively, in 180-d-old TRD cheeses. However, the residual levels were 52.8% for β-casein and 18% for αs-casein in IND cheeses. Similar differences were noted for the reversed-phase HPLC peptide profiles of 2 types of cheeses. Also, higher concentrations of peptides were eluted in IND cheeses than in TRD cheeses during ripening. A total of 73 volatile compounds, including alcohols (16), esters (17), acids (14), terpenes (7), ketones (5), aldehydes (4), and miscellaneous (10) were identified. The IND cheeses contained higher levels of carboxylic acids, esters, alcohols, and terpenes than the TRD cheeses; however, the same levels of methyl ketones were determined in the 2 types of cheeses at the end of ripening. These may be due to some differences (e.g., pasteurization and scalding temperature, among other factors) in the manufacture of the 2 types of Beaten cheeses. The textural profile of Beaten cheeses showed that TRD production method resulted in firmer, less fracturable, and stiffer cheeses than the IND production method. In conclusion, the results suggest that the use of industrial production method (pasteurization of cheese milk and curd scalding at 70°C) in the manufacture of Beaten ewe milk cheese enriched the volatile profile of the cheese.  相似文献   

11.
The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.  相似文献   

12.
Penicillium roqueforti plays an important role in the ripening of blue-veined cheeses, mostly due to lactic acid consumption and to its extracellular enzymes. The strong activity of P. roqueforti proteinases may bring about cheese over-ripening. Also, free amino acids at high concentrations serve as substrates for biogenic amine formation. Both facts result in shorter product shelf-life. To prevent over-ripening and buildup of biogenic amines, blue-veined cheeses made from pasteurized ovine milk were high-pressure treated at 400 or 600 MPa after 3, 6, or 9 wk of ripening. Primary and secondary proteolysis, biogenic amines, and sensory characteristics of pressurized and control cheeses were monitored for a 90-d ripening period, followed by a 270-d refrigerated storage period. On d 90, treatments at 400 MPa had lowered counts of lactic acid bacteria and P. roqueforti by less than 2 log units, whereas treatments at 600 MPa had reduced lactic acid bacteria counts by more than 4 log units and P. roqueforti counts by more than 6 log units. No residual α-casein (CN) or κ-CN were detected in control cheese on d 90. Concentrations of β-CN, para-κ-CN, and γ-CN were generally higher in 600 MPa cheeses than in the rest. From d 90 onwards, hydrophilic peptides were at similar levels in pressurized and control cheeses, but hydrophobic peptides and the hydrophobic-to-hydrophilic peptide ratio were at higher levels in pressurized cheeses than in control cheese. Aminopeptidase activity, overall proteolysis, and free amino acid contents were generally higher in control cheese than in pressurized cheeses, particularly if treated at 600 MPa. Tyramine concentration was lower in pressurized cheeses, but tryptamine, phenylethylamine, and putrescine contents were higher in some of the pressurized cheeses than in control cheese. Differences in sensory characteristics between pressurized and control cheeses were generally negligible, with the only exception of treatment at high pressure level (600 MPa) at an early ripening stage (3 wk), which affected biochemical changes and sensory characteristics.  相似文献   

13.
Goat cheeses were made from pasteurized (72 °C, 15 s) and high-pressure (HP)-treated milk (500 MPa, 15 min, 20 °C). At 45 days of ripening, cheeses made from both types of milk were similar in moisture, quality, electrophoretic profiles, water-soluble nitrogen, and total free fatty acid contents. Cheeses made from HP-treated milk had higher pH and salt, matured more quickly, as determined by formation of total free amino acids, and developed strong flavors. Reverse-phase high-performance liquid chromatography showed differences between the peptide profiles of the cheeses. Differences in small peptides and free amino acids indicated a higher extent of proteolysis in cheeses made from HP-treated milk.  相似文献   

14.
Kashar cheeses were manufactured from pure ovine (OV), bovine (BV) and caprine (CP) milk, and the chemical composition, cheese yield, proteolysis, hardness, meltability and volatile composition were studied during 90 days. Gross chemical composition, cheese yield and level of proteolysis were higher in OV cheeses than those of BV or CP cheeses. Glu, Val, Leu, Phe and Lys were the most abundant free amino acids (FAA) in the samples, and the concentrations of individual FAA were at the highest levels in OV cheeses with following BV and CP cheeses. Urea‐PAGE patterns and RP‐HPLC peptide profiles of the BV cheeses were completely different from the small ruminants’ milk cheeses (OV or CP). Higher and lower hardness and meltability values were observed in CP cheeses, respectively. OV cheeses resulted in higher levels of the major volatile compounds. In conclusion, the Kashar cheese made using OV milk can be recommended due to high meltability, proteolysis and volatiles.  相似文献   

15.
Conventional and ultra-filtered (UF) Iranian white cheeses were made with almost identical gross chemical composition and the extent and characteristics of proteolysis were studied during ripening. UF cheeses exhibited a lower rate of development of pH 4.6-soluble nitrogen than conventional cheeses. The rates of degradation of αs1-casein and particularly β-casein were lower in UF cheeses than in conventional cheeses. Plasmin activity was lower in UF cheeses than that in conventional cheese, whereas coagulant activity was higher in the former. Noticeable qualitative and quantitative differences were observed in reverse-phase high performance liquid chromatography (RP-HPLC) peptide profiles between UF and conventional white cheeses and chemometric analysis of peak height data distributed the cheeses into two separate groups. The levels of free amino acids in UF cheeses were lower than in conventional cheeses. Lower peptide degradation and production of amino acids suggested slower ripening, which may have been associated with the weak aroma development characteristic of UF cheeses.  相似文献   

16.
利用地衣芽孢杆菌凝乳酶制作切达干酪和切达干酪类似物,分析干酪成熟过程中各蛋白水解指标的变化规律,以揭示地衣芽孢杆菌凝乳酶对切达干酪成熟过程中蛋白水解的影响。结果表明,CDF组(添加地衣芽孢杆菌D3.11凝乳酶所制切达干酪)、CD3组(添加地衣芽孢杆菌D3.11凝乳酶但未添加发酵剂制成的干酪类似物)和CCF组(添加商品凝乳酶所制切达干酪)干酪蛋白含量、pH 4.6-可溶性氮、12%三氯乙酸-可溶性氮、5%磷钨酸-可溶性氮、总游离氨基酸含量均随着成熟时间延长呈显著增加趋势,并且成熟期间CDF组干酪均显著高于CCF组干酪(P<0.05);十二烷基硫酸钠-聚丙烯酰氨凝胶电泳分析表明,CDF组干酪α-酪蛋白水解程度较大;pH 4.6-可溶性肽段分析表明,随着干酪的成熟,总肽含量呈先增加后下降趋势,但疏水性肽与亲水性肽的比值呈持续下降趋势,在成熟第6个月时,CDF组、CD3组和CCF组干酪疏水性肽与亲水性肽比值分别为2.668、2.822、3.788。主成分分析表明,3 组干酪的蛋白水解程度与成熟度呈正相关,与疏水性肽和亲水性肽的比值呈负相关。以上结果表明,利用地衣芽孢杆菌凝乳酶制作的干酪蛋白水解度更高,但其疏水性肽比例较小,研究结果可为地衣芽孢杆菌凝乳酶在干酪生产中的应用提供理论依据。  相似文献   

17.
Hard cooked cheeses are mostly manufactured with lactic starters of Lactobacillus helveticus, which constitute a major proteolytic agent in the food. In this work, we assessed the proteolysis produced by enzymes of two strains of L. helveticus in a new cheese model, which consisted of a sterile substrate prepared with hard-cooked cheeses, and identified the time of ripening when main changes in proteolysis are produced. The extract, a representative model of the aqueous phase of the cheeses, was obtained from Reggianito cheeses of different ripening times (3, 90, and 180 days) made with starters composed of the strains tested, either SF138 or SF209. To obtain the substrate, the cheese was extracted with water, then centrifuged and the aqueous phase was sterilized by filtration through membrane (0.45 ??m). The substrates were incubated at 34 °C during 21 days; samples were taken at 0, 3, 7, 14, and 21 days. Sterility was verified by plating samples on skim milk agar and incubating at 37 °C for 48 h. Proteolysis was determined by liquid chromatography of soluble peptides and free amino acids. Great variation in peptide profiles was found as incubation progressed in cheese extracts, which evidenced that proteases and peptidases from the starter were active and able to degrade the proteinaceous material available in the extracts. The extracts derived from cheeses with L. helveticus SF138 showed low production of peptides and a notable increase in free amino acids content during incubation. L. helveticus SF209, on the contrary, caused an increase on soluble peptides, but the free amino acids accumulation was lower than in the first case, which suggested that L. helveticus SF209 had either a low peptydolitic activity or produced an intense amino acids breakdown. This trend was more evident for extracts prepared with 90-day-old cheeses. It was concluded that the strains of L. helveticus assayed showed potentially complementary proteolytic abilities, as SF209 was able to provide a continuous replenishment of peptides during incubation, while SF138 increased their hydrolysis to free amino acids. The extract was an appropriate medium to model hard cooked cheese ripening in short periods of time.  相似文献   

18.
Effect of pH and calcium concentration on proteolysis in mozzarella cheese   总被引:1,自引:0,他引:1  
Low-moisture Mozzarella cheeses (LMMC), varying in calcium content and pH, were made using a starter culture (control; CL) or direct acidification (DA) with lactic acid or lactic acid and glucono-delta-lactone. The pH and calcium concentration significantly affected the type and extent of proteolysis in Mozzarella cheese during the 70-d storage period at 4 degrees C. For cheeses with a similar pH, reducing the calcium-to-casein ratio from -29 to 22 mg/g of protein resulted in marked increases in moisture content and in primary and secondary proteolysis, as indicated by polyacrylamide gel electrophoresis and higher levels of pH 4.6- and 5%-PTA-soluble N. Increasing the pH of DA cheeses of similar moisture content, from approximately 5.5 to 5.9, while maintaining the calcium-to-casein ratio almost constant at approximately 29 mg/g, resulted in a decrease in primary proteolysis but had no effect on secondary proteolysis. Comparison of CL and DA cheeses with a similar composition showed that the CL cheese had higher levels of alpha(s1)-CN degradation, pH 4.6- and 5%-PTA-soluble N. Analysis of pH 4.6-soluble N extracts by reverse-phase HPLC showed that the CL cheese had higher concentrations of compounds with low retention times, suggesting higher concentrations of low molecular mass peptides and free amino acids.  相似文献   

19.
The inhibition of angiotensin-I-converting enzyme (ACE) by the ethanol (70%)-soluble fraction (ESF) from different cheeses was analysed with an extract from rabbit lung acetone powder as enzyme source and 2-furanacryloyl-1-phenylalanylglycylglycine (FAPGG) as substrate. Proteolysis was assessed by a spectroscopic o-phthaldialdehyde (OPA) assay of the pH 4.6-soluble fraction and ESF. Peptides in the ESF were separated by reverse phase-HPLC. The traditional Norwegian cheese Gamalost had per unit cheese weight higher ACE inhibition potential than Brie, Roquefort and Gouda-type cheese, likely due to the combination of highest protein content and most extensive proteolysis providing a high content of ACE inhibitory peptides. However, ACE-inhibition expressed as IC50 per unit peptide concentration from ESF assessed by the OPA-assay was highest for Kesam, a Quark-type cheese with a low degree of proteolysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号