首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 88 毫秒
1.
采用蒙特卡洛方法模拟退火计算了CH_4和CO_2在Ni催化剂表面竞争吸附的等量吸附热和等温吸附线,结果表明,较优的操作参数为:温度范围:1000 K~1150 K,压力:101.33 kPa,CO_2/CH_4:大于1.00。随后通过分子动力学模拟计算了CH_4和CO_2解离过程中产生的自由基在Ni(111)表面的吸附行为,其中CH_3、CH和C倾向于吸附在fcc位点,而H更易于在hcp位发生吸附,CH_2在桥位的吸附最优。同时吸附能的绝对值的顺序是:CH_2CH_4CH_3CHCH,吸附能的绝对值越大,相应的吸附构象越稳定。而CO_2和CO倾向于吸附在桥位,O更易于在顶位发生吸附,OH在hop位点的吸附最优。  相似文献   

2.
3.
Hygrometric measurements of the water activity are reported for the thermodynamic properties of the mixed aqueous electrolyte systems of ammonium–calcium chloride and ammonium–barium chloride at 298.15 K. The measurements were made at a large number of total molalities, varying from 0.4 mol kg−1 to saturation at three ionic-strength fractions (yy) of NH4Cl for the systems NH4Cl–CaCl2 (aq) and NH4Cl–BaCl2 (aq) with y=0.20,0.50y=0.20,0.50 and 0.80. The experimental data are reported as water activities and osmotic coefficients at various molalities, along with derived values of the activity coefficients of both solutes. The ranges of water activities awaw are 0.800–0.989 for ammonium–barium chlorides and aw=0.560–0.989aw=0.5600.989 for ammonium–calcium chlorides. The activity coefficients were calculated by means of a thermodynamic model based on a variant of the Pitzer ion-interaction equations with extended binary parameters. However, the results were also compared for the precision of the presentation of the osmotic coefficients using an extended model with the calculations of the Zdanovskii–Stokes–Robinson, Kusik and Meissner, Robinson and Stokes, Lietzke and Stoughton, Reilly, Wood and Robinson, and Pitzer models.  相似文献   

4.
5.
以2-吡啶甲酰肼为原料在甲醇和乙酸的混合溶液中合成了标题化合物C_(12)H_(10)N_4O_2。通过采用X射线单晶衍射仪测定了化合物的晶体结构,该晶体属于单斜晶系,空间群为C2/c,晶胞参数为a=1.34782(13)nm,b=1.11699(11)nm,c=0.75678(6)nm,α=90.00°,β=97.7550(10)°,γ=90.00°,V=1.12891(18)nm~2,Z=4,Dc=1.425 Mg.m~(-3),F(000)=504;最终偏差因子R_1=0.0492,wR_2=0.1249[对I>2θ(I)的衍射点]和R_1=0.0659,wR_2=0.1352[对所有衍射点]。该化合物分子由N-N键结合形成直线几何构型,分子间由弱的N—H…O氢键作用形成了二维网状结构。依据晶体结构数据使用程序Guassian 03对化合物进行了量子化学计算,探讨了化合物的分子轨道能量、原子净电荷布居规律和成键特征,分析了其活性原子,并预测了其稳定性。  相似文献   

6.
以对甲氧基苯甲醛和2-乙酰基吡啶为原料采用一锅法合成了4’-对甲氧基苯基-2,2’:6’,2"-三联吡啶,并测定了它的晶体结构。该晶体属单斜晶系,空间群P2(1)/c,晶胞参数为:a=19.063(11)A,b=5.203(3)A,c=17.331(10)A,β=91.366(7)°,V=1718.6(17)A3,Dc=1.312 g/cm3,Z=4,F(000)=712,GOF值1.006,最终偏离因子R1=0.0464,wR2=0.1172。通过量子化学计算分析了其键长、键角、电荷分布和分子轨道,并通过有限场方法计算了其二阶非线性光学性质。  相似文献   

7.
以对甲酰基苯甲酸和2-乙酰基吡啶为原料采用固相研磨法合成了4′-对羧基苯基-2,2’:6’,2"-三联吡啶,并测定了它的晶体结构。该晶体属单斜晶系,空间群P2(1)/c,晶胞参数为:a=10.193(7)A,b=7.366(5)A,c=22.466(15)A,β=90.526(7)°,V=1686.6(19)A3,Dc=1.392mg/m3,Z=4,F(000)=736,GOF值1.038,最终偏离因子R1=0.0443,wR2=0.1139。通过量子化学计算分析了其键长、键角、电荷分布和分子轨道,通过独立核化学位移分析了各个环的芳香性,并通过有限场方法计算了其二阶非线性光学性质。  相似文献   

8.
An L(2, 1)-labelling of a graph G is a vertex labelling such that the difference of the labels of any two adjacent vertices is at least 2 and that of any two vertices of distance 2 is at least 1. The minimum span of all L(2, 1)-labellings of G is the λ-number of G and denoted by λ(G). Lin and Lam computed λ(G) for a direct product G=K m ×P n of a complete graph K m and a path P n . This is a natural lower bound of λ(K m ×C n ) for a cycle C n . They also proved that when n≡ 0±od 5m, this bound is the exact value of λ(K m ×C n ) and computed the value when n=3, 5, 6. In this article, we compute the λ-number of G, where G is the direct product K 3×C n of the triangle and a cycle C n for all the other n. In fact, we show that among these n, λ(K 3×C n )=7 for all n≠7, 11 and λ(K 3×C n )=8 when n=7, 11.  相似文献   

9.
Carbonic anhydrase IX (CAIX) is a promising target in cancer therapy especially in the case of hypoxia-induced tumors. The selective inhibition of CA isozymes is a challenging task in drug design and discovery process. Here, we performed fluorescence-binding studies and inhibition assay combined with molecular docking and molecular dynamics (MD) simulation analyses to determine the binding affinity of two synthesized triazolo-pyrimidine urea derived (TPUI and TPUII) compounds with CAIX and CAII. Fluorescence binding results are showing that molecule TPUI has an excellent binding-affinity for CAIX (kD = 0.048 μM). The TPUII also exhibits an appreciable binding affinity (kD = 7.52 μM) for CAIX. TPUI selectively inhibits CAIX as compared to TPUII in the 4-NPA assay. Docking studies show that TPUI is spatially well-fitted in the active site cavity of CAIX, and is involve in H-bond interactions with His94, His96, His119, Thr199 and Thr200. MD simulation studies revealed that TPUI efficiently binds to CAIX and essential active site residual interaction is consistent during the entire simulation of 40 ns. These studies suggest that TPUI appeared as novel class of CAIX inhibitor, and may be used as a lead molecule for the development of potent and selective CAIX inhibitor for the hypoxia-induced cancer therapy.  相似文献   

10.
Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure–activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号