首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of acetylcholine on both pyramidal neurons and interneurons in the area CA1 of the rat hippocampus were examined, using intracellular recording techniques in an in vitro slice preparation. In current-clamp mode, fast local application of acetylcholine (ACh) to the soma of inhibitory interneurons in stratum radiatum resulted in depolarization and rapid firing of action potentials. Under voltage-clamp, ACh produced fast, rapidly desensitizing inward currents that were insensitive to atropine but that were blocked by nanomolar concentrations of the nicotinic alpha7 receptor-selective antagonists alpha-bungarotoxin (alphaBgTx) and methyllycaconitine. Nicotinic receptor antagonists that are not selective for alpha7-containing receptors had little (mecamylamine) or no effect (dihydro-beta-erythroidine) on the ACh-induced currents. Glutamate receptor antagonists had no effect on the ACh-evoked response, indicating that the current was not mediated by presynaptic facilitation of glutamate release. However, the current could be desensitized almost completely by bath superfusion with 100 nM nicotine. In contrast to those actions on interneurons, application of ACh to the soma of CA1 pyramidal cells did not produce a detectable current. Radioligand-binding experiments with [125I]-alphaBgTx demonstrated that stratum radiatum interneurons express alpha7-containing nAChRs, and in situ hybridization revealed significant amounts of alpha7 mRNA. CA1 pyramidal cells did not show specific binding of [125I]-alphaBgTx and only low levels of alpha7 mRNA. These results suggest that, in addition to their proposed presynaptic role in modulating transmitter release, alpha7-containing nAChRs also may play a postsynaptic role in the excitation of hippocampal interneurons. By desensitizing these receptors, nicotine may disrupt this action and indirectly excite pyramidal neurons by reducing GABAergic inhibition.  相似文献   

2.
Previous studies have shown that application of nicotinic agonists in the substantia nigra pars compacta increases the firing rate of dopaminergic neurons. We have used intracellular recordings to show that the response of these neurons to nicotine is postsynaptic, since it persists in the presence of low-calcium buffer containing tetrodotoxin. Burst firing in the presence of nicotine was not observed. The presence of postsynaptic nicotinic receptors was confirmed by immunohistochemical localization of the alpha4 nicotinic receptor subunit on dendrites in the substantia nigra pars compacta. The majority of tyrosine hydroxylase-immunopositive neurons in the substantia nigra pars compacta were also immunopositive for the alpha4 subunit. Immunohistochemical localization of the alpha4 and beta2 subunits in adjacent brain sections produced similar patterns of staining. Electron micrographs clearly indicated the presence of alpha4 subunit at postsynaptic densities. The predominant role of nicotinic receptors in the central nervous system has been suggested to be the presynaptic modulation of neurotransmitter release [McGehee D. S. and Role L. W. (1995) A. Rev. Physiol. 57, 521-546]. Although several postsynaptic nicotinic responses have also been reported in the literature, it is unclear as to whether the postsynaptic nicotinic receptors mediating responses to exogenously applied agonists are involved in synaptic transmission. From our electrophysiological and immunohistochemical results, we conclude that alpha4-containing nicotinic receptors are found at synapses on dopaminergic neurons. These synapses are similar to the cholinergic synapses described at these neurons, suggesting that nicotinic receptors are important in modulating the excitability of dopaminergic neurons by direct synaptic transmission.  相似文献   

3.
Nicotinic acetylcholine receptors containing alpha7 subunits are widely distributed in the vertebrate nervous system. In the chick ciliary ganglion such receptors generate large synaptic currents but appear to be excluded from postsynaptic densities on the cells. We show here that alpha7-containing receptors are concentrated on somatic spines in close proximity to putative sites of presynaptic transmitter release. Intermediate voltage electron microscopy on thick sections, together with tomographic reconstruction, permitted three-dimensional analysis of finger-like projections emanating from cell bodies. The projections were identified as spines based on their morphology, cytoskeletal content, and proximity to presynaptic elements. Both in situ and after ganglionic dissociation, the spines were grouped on the cell surface and tightly folded into mats. Immunogold labeling of receptors containing alpha7 subunits showed them to be preferentially concentrated on the somatic spines. Postsynaptic densities were present in vivo both on the soma near spines and occasionally on the spines themselves. Synaptic vesicle-filled projections from the presynaptic calyx were interdigitated among the spines. Moreover, the synaptic vesicles often abutted the membrane and sometimes included Omega profiles as if caught in an exocytotic event, even when no postsynaptic densities were juxtaposed on the spine. The results suggest several mechanisms for delivering transmitter to alpha7-containing receptors, and they support new ideas about synaptic signaling via spines. They also indicate that neurons must have specific mechanisms for targeting alpha7-containing receptors to desired locations.  相似文献   

4.
The activation of autoreceptors is known to be important in the modulation of presynaptic transmitter secretion in peripheral and central neurons. Using whole-cell recordings made from the free growth cone of myocyte-contact motoneurons of Xenopus cell cultures, we have observed spontaneous nerve terminal currents (NTCs). These spontaneous NTCs are blocked by d-tubocurarine (d-TC) and alpha-bungarotoxin (alpha-BuTx), indicating that endogenously released acetylcholine (ACh) can produce substantial membrane depolarization in the nerve terminals. Local application of NMDA to the growth cone increased the frequency of spontaneous NTCs. When the electrical stimulations were applied at the soma to initiate evoked-release of ACh, evoked ACh-induced potentials were recorded in the nerve terminals, which were inhibited by d-TC and hexamethonium but not by atropine. Replacement of normal Ringer's solution with high-Mg2+, low-Ca2+ solution also reversibly inhibited evoked ACh-induced potentials. The possible regulatory role of presynaptic nicotinic autoreceptors on the synaptic transmission was also examined. When the innervated myocyte was whole-cell voltage-clamped to record synaptic currents, application of hexamethonium inhibited the amplitude of evoked synaptic currents at a higher degree than that of iontophoretic ACh-induced currents. Furthermore, hexamethonium markedly reduced the frequency of spontaneous synaptic currents at high-activity synapses. Pretreatment of neurons with alpha-BuTx also inhibited the evoked synaptic currents in manipulated synapses. These results suggest that ACh released spontaneously or by electrical stimulation may act on the presynaptic nicotinic autoreceptors of the same nerve terminals to produce membrane potential change and to regulate synaptic transmission.  相似文献   

5.
HEK293 cells were stably transfected with rat neuronal nicotinic alpha4 and beta2 subunits. Binding of tritiated cytisine and nicotine to cell homogenates revealed the presence of a single class of high-affinity sites (dissociation constants 0.1 nM and 0.4 nM, respectively). Activation of nicotinic receptors was studied using whole-cell patch clamp methods, and acetylcholine, nicotine, dimethylphenylpiperazinium, and cytisine all produced a conductance increase. Responses desensitized to prolonged applications, at both positive and negative membrane potentials. The conductance was strongly rectifying, and outward currents were essentially absent. Responses were maximal at about 2 mM external calcium ion concentration and were reduced by about one-half at either nominally 0 or 10 mM external calcium. Di-hydro-beta-erythroidine blocked physiological responses to acetylcholine and nicotine (IC50, 2.5 nM), and reduced cytisine binding in a competitive manner (Ki 20 nM). Physostigmine enhanced the response to low concentrations of acetylcholine or nicotine. The anesthetic steroid (+)-3alpha-hydroxy-5alpha-androstane-17beta-carbonitrile blocked responses to acetylcholine (IC50, 1.3 microM), but had no effect on cytisine binding at a concentration of 30 microM. The binding properties of the receptors are those expected for rat neuronal nicotinic receptors composed of alpha4 and beta2 subunits. The pharmacological properties indicate that the responsiveness of the receptors may be allosterically enhanced or inhibited.  相似文献   

6.
Presynaptic GABAB receptors play a regulatory role in central synaptic transmission. To elucidate their underlying mechanism of action, we have made whole-cell recordings of calcium and potassium currents from a giant presynaptic terminal, the calyx of Held, and EPSCs from its postsynaptic target in the medial nucleus of the trapezoid body of rat brainstem slices. The GABAB receptor agonist baclofen suppressed EPSCs and presynaptic calcium currents but had no effect on voltage-dependent potassium currents. The calcium current-EPSC relationship measured during baclofen application was similar to that observed on reducing [Ca2+]o, suggesting that the presynaptic inhibition generated by baclofen is caused largely by the suppression of presynaptic calcium influx. Presynaptic loading of the GDP analog guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS) abolished the effect of baclofen on both presynaptic calcium currents and EPSCs. The nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) suppressed presynaptic calcium currents and occluded the effect of baclofen on presynaptic calcium currents and EPSCs. Photoactivation of GTPgammaS induced an inward rectifying potassium current at the calyx of Held, whereas baclofen had no such effect. We conclude that presynaptic GABAB receptors suppress transmitter release through G-protein-coupled inhibition of calcium currents.  相似文献   

7.
We assessed the pharmacological activity of anabaseine, a toxin found in certain animal venoms, relative to nicotine and anabasine on a variety of vertebrate nicotinic receptors, using cultured cells, the Xenopus oocyte expression system, contractility assays with skeletal and smooth muscle strips containing nicotinic receptors and in vivo rat prostration assay involving direct injection into the lateral ventricle of the brain. Anabaseine stimulated every subtype of nicotinic receptor that was tested. It was the most potent frog skeletal muscle nicotinic receptor agonist. At higher concentrations it also blocked the BC3H1 (adult mouse) muscle type receptor ion channel. The affinities of the three nicotinoid compounds for rat brain membrane alpha-bungarotoxin binding sites and their potencies for stimulating Xenopus oocyte homomeric alpha7 receptors, expressed in terms of their active monocation concentrations, displayed the same rank order, anabaseine>anabasine> nicotine. Although the maximum currents generated by anabaseine and anabasine at alpha7 receptors were equivalent to that of acetylcholine, the maximum response to nicotine was only about 65% of the acetylcholine response. At alpha4-beta2 receptors the affinities and apparent efficacies of anabaseine and anabasine were much less than that of nicotine. Anabaseine, nicotine and anabasine were nearly equipotent on sympathetic (PC12) receptors, although parasympathetic (myenteric plexus) receptors were much more sensitive to anabaseine and nicotine but less sensitive to anabasine. These differences suggest that there may be different subunit combinations in these two autonomic nicotinic receptors. The preferential interactions of anabaseine, anabasine and nicotine with different receptor subtypes provides molecular clues that should be helpful in the design of selective nicotinic agonists.  相似文献   

8.
As shown on cultured striatal neurons recorded in whole-cell configuration, both acetylcholine (in the presence of atropine) and nicotine reduced voltage-dependent outward currents. Although, at early postnatal ages, outward currents in these cells are mainly carried by rapidly and slowly inactivating K+ channels, these inhibitions resulted from a selective and reversible effect on the slowly inactivating K+ conductance (IK+). This action was blocked by the nicotinic antagonist dihydro-beta-erythro?dine and reproduced by nicotinic agonists. When neurons were recorded under current-clamp conditions, nicotine increased reversibly their firing rate generated by step depolarizations. Therefore, in addition to its well documented muscarinic effects, acetylcholine also controls K+ currents in striatal neurons through mechanisms mediated by nicotinic receptors.  相似文献   

9.
1. Site-directed mutagenesis was used to create an altered form of the chicken alpha7 nicotinic acetylcholine (ACh) receptor subunit (alpha7x61) in which a leucine residue was inserted between residues Leu9' and Ser10' in transmembrane domain 2. The properties of alpha7x61 receptors are distinct from those of the wild-type receptor. 2. Oocytes expressing wild-type alpha7 receptors responded to 10 microM nicotine with rapid inward currents that desensitized with a time-constant of 710+/-409 ms (mean+/-s.e.mean, n=5). However in alpha7x61 receptors 10 microM nicotine resulted in slower onset inward currents that desensitized with a time-constant of 5684+/-3403 ms (mean+/-s.e.mean, n = 4). No significant difference in the apparent affinity of nicotine or acetylcholine between mutant and wild-type receptors was observed. Dihydro-beta-erythroidine (DHbetaE) acted as an antagonist on both receptors. 3. Molecular modelling of the alpha7x61 receptor channel pore formed by a bundle of M2 alpha-helices suggested that three of the channel lining residues would be altered by the leucine insertion i.e.; Ser10 would be replaced by the leucine insertion, Val13' and Phe14' would be replaced, by Thr and Val, respectively. 4 When present in the LEV-1 nicotinic ACh receptor subunit from Caenorhabditis elegans the same alteration conferred resistance to levamisole anthelmintic drug. Levamisole blocked responses to nicotine of wild-type and alpha7x61 receptors. However, block was more dependent on membrane potential for the alpha7x61 receptors. 5. We conclude that the leucine insertion in transmembrane domain 2 has the unusual effect of slowing desensitization without altering apparent agonist affinity.  相似文献   

10.
The aim of this work was to assess whether nicotine prevents glutamate neurotoxicity in primary cultures of cerebellar neurons, to try to identify the receptor mediating the protective effect and to shed light on the step of the neurotoxic process which is prevented by nicotine. It is shown that nicotine prevents glutamate and NMDA neurotoxicity in primary cultures of cerebellar neurons. The protective effect of nicotine is not prevented by atropine, mecamylamine or dihydro-beta-erythroidine, but is slightly prevented by hexamethonium and completely prevented by tubocurarine and alpha-bungarotoxin, indicating that the protective effect is mediated by activation of alpha7 neuronal nicotinic receptors. Moreover, alpha-bungarotoxin potentiates glutamate neurotoxicity, suggesting a tonic prevention of glutamate neurotoxicity by basal activation of nicotinic receptors. Nicotine did not prevent glutamate-induced rise of free intracellular calcium nor depletion of ATP. Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and disaggregation of the neuronal microtubular network. The possible mechanism responsible for this prevention is discussed.  相似文献   

11.
We analyzed the kinetics and pharmacology of EPSCs in two kinds of neurons in the embryonic avian ciliary ganglion. Whole-cell voltage-clamp recordings revealed that the singly innervated ciliary neurons had large-amplitude (1.5-8.0 nA) EPSCs that could be classified according to the kinetics of their falling phases. Most of the neurons responded with an EPSC the falling phase of which followed a double exponential time course with time constants of approximately 1 and 10 msec. The EPSCs of the remaining ciliary neurons followed a single time constant ( approximately 8 msec). Multiple innervated choroid neurons had smaller-amplitude responses (0.2-1.5 nA when all inputs were activated) that appeared to contain only a slowly decaying component (tau = 12 msec). The fast and slow components of EPSC decay seen in most ciliary neurons could be pharmacologically isolated with two toxins against nicotinic acetylcholine receptors (AChRs). The fast component was blocked by 50 nM alpha-bungarotoxin (alpha-BuTx), which binds alpha7-subunit-containing AChRs. The slow component was selectively blocked by 50 nM alpha-conotoxin MII (alpha-CTx-MII), which blocks mammalian AChRs containing an alpha3/beta2 subunit interface. A combination of both alpha-BuTx and alpha-CTx-MII abolished nearly all evoked current. Similar pharmacological results were found for ciliary neurons with monoexponentially decaying EPSCs and for choroid neurons. These results suggest that nerve-evoked transmitter acts on at least two different populations of AChRs on autonomic motor neurons in the ciliary ganglion.  相似文献   

12.
1. The possible role of intracellular Ca2+ levels ([Ca2+]i) in desensitization of nicotinic acetylcholine receptors (AChRs) was investigated in rat cultured chromaffin cells by use of combined whole-cell patch clamping and confocal laser scanning microscopy with the fluorescent dye fluo-3. 2. On cells held at -70 mV, pressure-application of nicotine elicited inward currents with associated [Ca2+]i rises mainly due to influx through nicotinic AChRs. These responses were blocked by (+)-tubocurarine (10 microM) but were insensitive to alpha-bungarotoxin (1 microM) or Cd2+ (0.1 mM). 3. Pressure applications of 1 mM nicotine for 2 s (conditioning pulse) evoked inward currents which faded biexponentially to a steady state level due to receptor desensitization and were accompanied by a sustained increase in [Ca2+]i. Inward currents evoked by subsequent application of brief test pulses of nicotine were depressed but recovered with a time course reciprocal to the decay of the [Ca2+]i transient induced by the conditioning pulse. 4. Omission of intracellular Ca2+ chelators or use of high extracellular Ca2+ solution (10 mM) lengthened recovery of nicotinic AChRs from desensitization while adding BAPTA or EGTA intracellularly had the opposite effect. When the patch pipette contained fluo-3 or no chelators, after establishing whole cell conditions the rate of recovery became progressively longer presumably due to dialysis of endogenous Ca2+ buffers. None of these manipulations of external or internal Ca2+ had any effect on onset or steady state level of desensitization. 5. High spatial resolution imaging of [Ca2+]i in intact cells (in the presence of 0.1 mM Cd2+) showed that its level in the immediate submembrane area decayed at the same rate as in the rest of the cell, indicating that Ca2+ was in a strategic location to modulate (directly or indirectly) AChR desensitization. 6. The present data suggest that desensitized nicotinic AChRs are stabilized in their conformation by raised [Ca2+]i and that this phenomenon retards their recovery to full activity.  相似文献   

13.
Although the expression patterns of the neuronal nicotinic acetylcholine receptor (nAChR) subunits thus far described are known, the subunit composition of functional receptors in different brain areas is an ongoing question. Mice lacking the beta2 subunit of the nAChR were used for receptor autoradiography studies and patch-clamp recording in thin brain slices. Four distinct types of nAChRs were identified, expanding on an existing classification [Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455-1473.], and tentatively identifying the subunit composition of nAChRs in different brain regions. Type 1 nAChRs bind alpha-bungarotoxin, are not altered in beta2 -/- mice, and contain the alpha7 subunit. Type 2 nAChRs contain the beta2 subunit because they are absent in beta2 -/- mice, bind all nicotinic agonists used with high affinity (excluding alpha-bungarotoxin), have an order of potency for nicotine > cytisine in electrophysiological experiments, and are likely to be composed of alpha4 beta2 in most brain regions, with other alpha subunits contributing in specific areas. Type 3 nAChRs bind epibatidine with high affinity in equilibrium binding experiments and show that cytisine is as effective as nicotine in electrophysiological experiments; their distribution and persistence in beta2 -/- mice strongly suggest a subunit composition of alpha3 beta4. Type 4 nAChRs bind cytisine and epibatidine with high affinity in equilibrium binding experiments and persist in beta2 -/- mice; cytisine = nicotine in electrophysiological experiments. Type 4 nAChRs also exhibit faster desensitization than type 3 nAChRs at high doses of nicotine. Knock-out animals lacking individual alpha subunits should allow a further dissection of nAChR subclasses.  相似文献   

14.
Although nicotinic acetylcholine receptors (nAChRs) are known to be present on neural elements in both the bowel and the pancreas, the precise location of these receptors has not previously been determined. Immunocytochemistry, by using a rat monoclonal antibody (mAb35), which recognizes alpha-bungarotoxin (alpha-Bgt)-insensitive nAChRs, and a polyclonal antibody raised against the alpha-Bgt-sensitive receptor subunit, alpha7, was used to locate receptor protein in guinea pig gut and pancreas. mAb35-receptor (mAb35-R) immunoreactivity was abundant in both enteric plexuses, enterochromaffin cells, and pancreatic ganglia. Immunostaining was associated with the cell membrane, and clusters of mAb35-R were observed on cell somas and dendrites. Receptor immunoreactivity was also observed on terminals and axons, suggesting that a subset of nAChRs is presynaptic. Internal sites of mAb35-R were observed in permeabilized ganglia. Cells expressing the receptors were closely associated with ChAT-immunoreactive nerve fibers. In addition, the majority of ChAT-positive neurons expressed both cell surface and internal stores of mAb35-R. In the bowel, clusters of mAb35-R were present on the soma and dendrites of Dogiel type I motorneurons and secretomotor neurons. Receptors were detected at the plasma membrane of calbindin-immunoreactive myenteric neurons. In contrast, calbindin-immunoreactive submucosal neurons did not express cell surface mAb35-R, supporting the idea that they are sensory neurons. A subset of enteric neurons expressed both mAb35-R and glutamate receptor (GluR1) immunoreactivity. In the pancreas, mAb35-R immunoreactivity was only observed in ganglia. Alpha7-immunoreactivity was found on both enteric cell bodies and nerve fibers. Based on these results, it appears that visceral nAChRs are composed of at least four subunits and that both pre- and postsynaptic nAChRs are present in the gut and pancreas.  相似文献   

15.
The amplitude of the hippocampal evoked response to the second of two identical auditory stimuli is suppressed relative to the response to the first stimulus. This inhibitory gating of sensory response has been linked to alpha-bungarotoxin-sensitive nicotinic receptors, which are found primarily on gamma-amino butyric acid neurons in rat hippocampus. A recent study showed a high level of colocalization of alpha-bungarotoxin binding with immunoreactivity for nitric oxide synthase, the catalytic enzyme which produces nitric oxide, in rat hippocampus. To determine if loss of enzyme activity would alter normal sensory inhibition, Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, was continuously perfused through the ventricular system of anesthetized rats as they were tested for response to paired auditory stimuli. L-NAME, but not Nomega-nitro-D-arginine methyl ester (D-NAME), the inactive enantiomer, produced a loss of sensory inhibition. To determine if the effect of nitric oxide was presynaptic or postsynaptic to nicotinic receptors, rats with lesions of the fimbria/fornix, which removes the medial septal projection to the hippocampus, were tested with nicotine in the presence of L- or D-NAME. Fimbria/fornix lesions normally reduce sensory inhibition, which is restored with systemic nicotine injections. Lesioned rats treated with D-NAME showed normal sensory inhibition upon injection of nicotine; lesioned rats treated with L-NAME did not. These data support the hypothesis that stimulation of a nicotinic receptor releases nitric oxide, which in turn mediates sensory inhibition. The nicotine-induced release of nitric oxide may explain why some of the behavioral effects of nicotine have a longer time course than predicted from desensitization of nicotinic receptors.  相似文献   

16.
The accumulation of functional neurotransmitter receptors by neurons during development is an essential part of synapse formation. Chick ciliary ganglion neurons express two kinds of nicotinic receptors. One is abundant, contains the alpha7 gene product, rapidly desensitizes, and binds alpha-bungarotoxin. The other is less abundant, contains multiple gene products (alpha3, beta4, alpha5, and beta2 subunits), slowly desensitizes, and binds the monoclonal antibody mAb 35. Rapid application of agonist to freshly dissociated neurons elicits responses from both classes of receptors. Between embryonic days 8 and 15, the whole cell response of alpha3-containing receptors increases fivefold in peak amplitude and, normalized for cell growth, 1.7-fold in current density. In addition, the response decays more slowly in older neurons, suggesting a developmental decrease in the rate of desensitization. The whole cell response of alpha7-containing receptors increases 10-fold in peak amplitude over the same period and 3-fold in current density. No change in the rate of desensitization was apparent for alpha7-containing receptors with developmental age, but analysis was limited by overlap in responses from the two kinds of receptors. Indirect immunofluorescence measurements on dissociated neurons showed that the relative levels of alpha7-containing receptors on the soma increased during development to the same extent as the whole cell response attributed to them. In contrast, the relative levels of alpha3-containing receptors increased more during the same time period than did the whole cell response they generated. The immunofluorescence analysis also showed that both classes of receptors become distributed in prominent clusters on the cell surface as a function of developmental age. The results indicate that during this period of synaptic consolidation on the neurons, the two major classes of functional nicotinic receptors undergo substantial upregulation; alpha3-containing receptors as a class may undergo changes in receptor properties as well.  相似文献   

17.
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.  相似文献   

18.
Bactericidal effect of the Nd:YAG laser in in vitro root canals   总被引:1,自引:0,他引:1  
The spatio-temporal patterns of neural activity evoked by electrical stimuli to the antennal nerve (AN) in male cockroach antennal lobes (ALs) in vivo were analyzed by optical imaging using a voltage-sensitive dye. The response pattern was initially a depolarization on the AN and subsequently a depolarization followed by a hyperpolarization on the whole area of macroglomerulus (MG) and a part of ordinary glomerulus (OG). It was suggested by the pharmacological results that the depolarizing responses on the AL consist of both a presynaptic response, representing synchronous compound action potentials from the AN, and a postsynaptic response, representing synchronous compound excitatory postsynaptic potentials and action potentials from neurites of AL neurons, and that the inhibitory responses of GABAergic local interneurons in the AN are different in time course from that in the AL.  相似文献   

19.
The effects of the nicotinic agonist (+)-anatoxin-a have been examined in four different preparations, representing at least two classes of neuronal nicotinic receptors. (+)-Anatoxin-a was most potent (EC50 = 48 nM) in stimulating 86Rb+ influx into M10 cells, which express the nicotinic receptor subtype comprising alpha 4 and beta 2 subunits. A presynaptic nicotinic receptor mediating acetylcholine release from hippocampal synaptosomes was similarly sensitive to (+)-anatoxin-a (EC50 = 140 nM). alpha-Bungarotoxin-sensitive neuronal nicotinic receptors, studied using patch-clamp recording techniques, required slightly higher concentrations of this alkaloid for activation: Nicotinic currents in hippocampal neurons were activated by (+)-anatoxin-a with an EC50 of 3.9 microM, whereas alpha 7 homooligomers reconstituted in Xenopus oocytes yielded an EC50 value of 0.58 microM for (+)-anatoxin-a. In these diverse preparations, (+)-anatoxin-a was between three and 50 times more potent than (-)-nicotine and approximately 20 times more potent than acetylcholine, making it the most efficacious nicotinic agonist thus far described.  相似文献   

20.
The presynaptic nicotinic modulation of dopamine release from striatal nerve terminals is well established, but the subtype(s) of neuronal nicotinic acetylcholine receptor (nAChR) underlying this response has not been identified. Recently, alpha-conotoxin-MII has been reported to inhibit potently and selectively the rat alpha3beta2 combination of nAChR subunits. Here we have synthesised the peptide, confirmed its specificity, and examined its effect on the (+/-)-anatoxin-a-evoked release of [3H]dopamine from rat striatal synaptosomes and slices. Alpha-conotoxin-MII (112 nM) completely blocked acetylcholine-evoked currents of alpha3beta2 nAChRs expressed in Xenopus oocytes (IC50 = 8.0 +/- 1.1 nM). Pairwise combinations of other nicotinic subunits were not blocked by 112 nM alpha-conotoxin-MII. On perfused striatal synaptosomes and slices, alpha-conotoxin-MII dose-dependently inhibited [3H]dopamine release evoked by 1 microM (+/-)-anatoxin-a with IC50 values of 24.3 +/- 2.9 and 17.3 +/- 0.1 nM, respectively. The dose-response curve was shifted to the right with increasing agonist concentrations. However, the maximal inhibition of responses achieved by alpha-conotoxin-MII (112 nM) was 44.9 +/- 5.4% for synaptosomes and 25.0 +/- 4.1% for slices, compared with an inhibition by 10 microM mecamylamine of 77.9 +/- 3.7 and 88.0 +/- 2.1%, respectively. These results suggest the presence of presynaptic alpha3beta2-like nAChRs on striatal dopaminergic terminals, but the incomplete block of (+/-)-anatoxin-a-evoked [3H]dopamine release by alpha-conotoxin-MII also supports the participation of nAChRs composed of other subunits. The lower inhibition found in slices is consistent with an additional indirect nicotinic stimulation of dopamine release via an alpha-conotoxin-MII-insensitive nAChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号