首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计制备了新型高氮低镍奥氏体不锈钢(高氮钢)。采用阳极动电位极化法测量了此钢在不同浓度和不同pH值的NaCl溶液中的点蚀电位,获得了点蚀电位随溶液浓度及pH值变化的关系曲线,并与800H钢进行了对比。用扫描电镜(SEM)对样品表面进行了形貌观察,对点腐蚀坑处进行了线扫描,分析了高氮钢耐点蚀的机理。研究表明,在不同浓度和pH值的NaCl溶液中,高氮钢的点蚀电位达到1.2 V以上,800H钢的点蚀电位在0.3 V以下。扫描图显示腐蚀区域内,高氮钢的点蚀坑稀少且面积较小,800H钢的点蚀坑密集且面积较大。线扫描表明氮在腐蚀坑内的含量略有下降;氮在钝化膜/金属界面富集,形成NH4+,并且抑制侵蚀性Cl-的吸附是提高高氮钢耐蚀性的原因。  相似文献   

2.
采用动电位扫描技术测量304不锈钢在3.5%NaCl溶液中不同电位扫描速率下的极化曲线,用电子散斑干涉技术(ESPI)结合动电位扫描测量304不锈钢在不同浓度、温度和pH值的NaCl溶液中的点蚀电位。结果表明,电位扫描速率为0.3~6 mV/s时,其对304不锈钢在NaCl溶液中的自腐蚀电位和点蚀电位以及滞后环的大小的影响较小。电子散斑干涉技术测量的点蚀电位表明304不锈钢的点蚀敏感性随着溶液浓度和温度的增加而增大,随着溶液pH值的增加而减小。  相似文献   

3.
利用动电位极化曲线、电化学阻抗谱和电流-时间响应曲线对高氮钢在不同pH值NaCl溶液中的电化学行为进行了研究。结果表明,高氮钢在酸性NaCl溶液中处于非稳定状态,出现3个自腐蚀电位,在碱性NaCl中发生阳极钝化,腐蚀速率随溶液pH值的增加而降低;在阳极极化条件下,高氮钢在中性NaCl溶液中生成的膜疏松多孔,对基体的保护性较差;而酸性和碱性NaCl溶液中,生成的钝化膜比中性NaCl中的致密。H+和OH-参与了钝化膜的成膜过程。  相似文献   

4.
通过电化学动电位扫描技术,采用正交试验法,研究了溴化锂(LiBr)吸收式热泵用管材316L不锈钢在热网水中的耐蚀性,建立了316L点蚀电位关于热网水温度、Cl-浓度和p H值三因素数学模型。通过腐蚀失重和电化学极化法进行了316L不锈钢在吸收器LiBr溶液中的点蚀性能研究。结果表明:温度与Cl-浓度对316L点蚀电位影响负相关,而p H值对其影响正相关,且各因素影响的显著程度为p H值温度Cl-浓度。吸收器条件下316L不锈钢的腐蚀速率仅为0.78μm/a,其表面点蚀坑多但较浅,且分布较均匀;但是316L点蚀电位Eb低于其氧平衡电位φ较多,点蚀仍可能发生。  相似文献   

5.
pH值对挤压Mg合金AM60腐蚀的影响   总被引:2,自引:0,他引:2  
观察了挤压Mg合金AM60在pH值分别为3,7和12的3.5%NaCl溶液中的腐蚀形貌,测量了蚀坑的数目和尺寸,讨论了pH值对AM60腐蚀的影响和AlMn相粒子在腐蚀中的作用,提出了AM60的点蚀模型.实验表明,在溶液pH值为酸性和中性(pH=3或pH=7)时,AM60产生点蚀,它萌生于与AlMn相粒子相邻的α相;pH值为碱性(pH=12)时,产生高Al区(如:AlMn相和β相)的均匀腐蚀,呈现蜂窝状腐蚀形貌.pH=7时,点蚀坑数目最多.  相似文献   

6.
采用极化曲线、电化学阻抗谱(EIS)、金相显微镜等方法,研究了不同交流电流密度作用下X80钢在0.5mol/L NaCl溶液中的腐蚀行为。结果表明,随着交流电流密度的升高,X80在NaCl溶液中的腐蚀电位均较负,腐蚀电流密度出现波动,阳、阴极Tafel斜率的比值出现大幅度变化,极化电阻和低频区阻抗模值也均出现波动;X80钢表面出现越来越多的大点蚀坑及分布较均匀的小点蚀坑,局部腐蚀严重。  相似文献   

7.
采用线性极化曲线、阻抗谱电化学技术等分析方法,研究了不同温度下,超级13Cr油套管钢在NaCl溶液中的腐蚀行为。结果表明:60、80和100℃对应的点蚀电位分别:-0.24、-0.27、-0.36 V,随温度升高,超级13Cr的点蚀电位下降,点蚀的尺寸逐渐增大,到100℃时,由点蚀引发了局部腐蚀,腐蚀速率增大;温度升高导致超级13Cr油套管钢在NaCl溶液中的耐腐蚀性降低。  相似文献   

8.
通过正交试验法,采用动电位扫描技术研究了Cl-浓度、pH值和温度对X70钢在HCO3-+Cl-介质中电化学行为的交互影响.结果表明:Cl-浓度、pH值、温度三因素对X70管线钢在模拟土壤溶液中腐蚀及钝化行为影响较大,三因素对其点蚀敏感性影响依次为:pH值Cl-浓度温度;在Cl-浓度为0.010 mol/L、温度35℃、pH值为8.2的模拟土壤溶液中X70钢的点蚀敏感性最大,钝化区间较窄(-0.257~0.204 V),当电位超过0.204 V时已处于过钝化状态.  相似文献   

9.
通过开路电位、动电位极化、电化学阻抗谱、X射线光电子能谱(XPS)、扫描电镜(SEM)等分析手段研究了酸性含氯溶液pH的变化对汽轮机末级叶片用钢14Cr12Ni3WMoV电化学腐蚀行为的影响.结果 表明:随着酸性含氯溶液pH的减小,材料表面阻抗减小,腐蚀速率和点蚀敏感性均增大;点蚀发生时,pH的减小会导致蚀坑沿纵向的发...  相似文献   

10.
利用3.5%(质量分数)NaCl溶液室温周期浸泡试验及电化学试验研究了不同C、Si含量车轮钢的腐蚀行为。用失重法测量了试样的腐蚀速率;观察了不同腐蚀时间后试样的表面形貌及截面形貌;利用光学表面形貌仪观测了不同腐蚀时间后试样表面粗糙度和腐蚀坑尺寸。结果表明:随C含量的增加及Si含量的降低,车轮钢稳态腐蚀速率增大;Si含量的提高使车轮钢自腐蚀电位升高以及表面电荷转移电阻增大,从而提高了其耐蚀性;在试验周期范围内,不同试样在腐蚀3d后表面均出现点蚀,并随腐蚀时间的延长,点蚀坑尺寸和表面粗糙度增大。点蚀坑的出现会破坏车轮钢表面的完整性,在腐蚀坑底部造成应力集中,危害车轮的安全运行。  相似文献   

11.
分别采用RE-N-C-V-Nb盐浴多元共渗技术和淬火+回火热处理方法制备了2种H13钢试样。利用扫描电子显微镜、X射线衍射仪观察经RE-N-C-V-Nb盐浴多元共渗处理后H13钢的显微组织结构。采用动电位极化曲线、阻抗谱等方法研究了RE-N-C-V-Nb盐浴多元共渗与淬火+回火2种方法处理后H13钢的耐腐蚀性能。结果表明:多元共渗的渗层由细小均匀、致密性好且呈弥散性分布的氮碳化合物组成;在3.0%的NaCl溶液中,其自腐蚀电位和极化电阻分别为-0.946V和1 574Ω·cm2,高于淬火+回火钢的相应值;自腐蚀电流密度和腐蚀速率分别为1.017mA/cm2和0.119 68mm/a,低于淬火+回火的相应值;其腐蚀特征以点蚀和均匀腐蚀出现,而淬火+回火钢以点腐蚀和晶间腐蚀出现。这表明H13钢经过RE-NC-V-Nb盐浴多元共渗处理后具有较高的耐腐蚀性能。  相似文献   

12.
通过浸泡实验与电化学测试,研究了固溶态Cu-4wt.%Ti合金在模拟污染海水(含S2-的3.5wt.% NaCl溶液)的腐蚀行为。借助扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱仪(XPS)对铜钛合金表面腐蚀产物进行测试分析。结果表明:含Cl-溶液中铜钛合金的腐蚀形式为点蚀,点蚀坑尺寸较小,分布均匀。添加S2-后点蚀更容易被诱发,点蚀坑尺寸较大。当NaCl溶液中的S2-浓度达到60ppm时,点蚀坑在合金表面相互连接,呈现出均匀腐蚀的形态;S2-<和Cl-对铜钛合金的腐蚀存在竞争吸附,S2-吸附性强对铜钛合金的腐蚀剧烈;在含S2-的NaCl溶液中腐蚀产物主要为CuS、Cu2S、Cu2O以及Cu2(OH)3Cl。S2-浓度较大时会导致溶液中OH-浓度增加,使腐蚀产物膜层厚度与致密度增加,因此当S2-浓度达到100ppm时铜钛合金能够发生钝化从而减缓腐蚀。  相似文献   

13.
不同热处理态2024铝合金的腐蚀行为   总被引:1,自引:0,他引:1  
K.  S.  GHOSH  Md.  HILAL Sagnik  BOSE 《中国有色金属学会会刊》2013,23(11):3215-3227
分别在3.5%NaCl溶液、3.5%NaCl+1.0%H2O2溶液和pH=12的3.5%NaCl溶液中进行动电位极化实验,研究2024 Al-Cu-Mg合金在不同热处理状态下的腐蚀行为。极化曲线表明,随着合金时效时间的延长,合金的腐蚀电位向负方向移动;向NaCl溶液中添加H2O2会使腐蚀电位正移;在pH=12的3.5%NaCl溶液中的极化曲线表现出明显的钝化现象。腐蚀试样表面表现为常见的腐蚀特征,但也有扩大的点蚀、晶间腐蚀现象出现。循环动电位极化曲线显示有宽的循环极化滞后环,不同的腐蚀模式表明合金的点蚀生长对合金的热处理状态敏感。通过显微组织分析,探讨了不同热处理状态下合金在不同NaCl溶液中的腐蚀机理。  相似文献   

14.
A3钢及304不锈钢孔蚀保护电位的确定   总被引:1,自引:0,他引:1  
采用模拟闭塞电池法和模拟闭塞区溶液法,测定了0Cr18Ni9奥氏体不锈钢(304SS)在0.5mol.L^-1NaCl(pH=7)以及A3钢在0.01mol.L^-1NaCl(pH=12)两种体系,孔蚀的不同阶段孔内外间电流的换向电位ET。结果表明,ET值阴闭塞区溶液组成的变化而变化,但存在一个范围,将304不锈钢的ET值与用孔蚀滞后环法在不同扫描速度,不同回扫电流时所测得的孔蚀保护电位Ep值作比较,发现Ep值范围处于ET值范围之内,ET值可以为孔蚀阴极保护电位参数的确定提供依据。  相似文献   

15.
目的研究真空度对2205双相不锈钢在海水淡化环境中耐点蚀性能的影响。方法在1.5倍人工浓缩海水中,采用循环阳极极化曲线与电化学阻抗谱等电化学方法,研究了2205双相不锈钢的点蚀和再钝化行为,并通过扫描电子显微镜对极化后试样的腐蚀形貌进行分析。结果测试了七种不同真空状态下2205双相不锈钢的循环阳极极化曲线和电化学阻抗谱,发现随着真空度的升高,试样的自腐蚀电位和点蚀电位均不断降低,分别约从-256 m V和605 m V下降到-485 m V和363 m V(均vs.SCE),点蚀倾向明显增大。同时,Nyquist曲线中的半圆弧逐渐变得扁平,Bode图中的相位角约从80°下降到77°,但是点蚀电位与再钝化电位之差逐渐升高。不同真空度下循环阳极极化后,试样表面的点蚀坑形貌不完全相同,蚀坑数量随着真空度的升高而明显减少,当真空度升高为0.72时,点蚀坑尺寸明显减小。结论随着真空度的逐渐升高,不锈钢钝化膜的致密性和保护性降低,电化学阻抗值逐渐减小,耐点蚀性能变差,但是再钝化性能却有所增强。循环阳极极化后试样的腐蚀程度减小。  相似文献   

16.
基于国内外常用不锈钢点蚀电位的测试标准,采用动电位极化曲线测量法,研究了最终打磨后的停留时间、电位扫描速率和溶液预除氧时间等测试条件对304L奥氏体不锈钢和S32101双相不锈钢在3.5%NaCl溶液中自腐蚀电位(Ecorr)和点蚀电位的影响.结果表明:最终打磨后停留时间由0 h延长至24 h,两种钢的Ecorr显著提...  相似文献   

17.
几种典型耐海水钢耐点蚀性能的比较   总被引:1,自引:0,他引:1  
选择了三种典型的耐海水腐蚀钢,在pH为10的3%(wt.%)NaCl溶液中进行了极化试验,比较了钢的点蚀诱发敏感性;在3%(wt.%)海盐水和人造海水中分别进行了间浸挂片试验和模拟闭塞腐蚀电池试验,评价了钢的点蚀扩展速度;利用金相显微镜、电子探针(EPMA)、扫描电镜(SEM)和X射线衍射(XRD)分析了钢中夹杂物、腐蚀形貌和锈层的特征。结果表明,Ni-Cu-P钢的点蚀诱发敏感性比Cr-Cu-Ni钢强,Cr-Cu-P钢最弱。在相同条件下,Cr-Cu-P和Cr-Cu-Ni钢的点蚀扩展速度接近,但都明显大于Ni-Cu-P钢。四种钢的内锈层主要组成均为Fe3O4、α-FeOOH和和少量的非晶化合物,但Cr-Cu-P和Cr-Cu-Ni钢的内锈层明显比Ni-Cu-P钢致密。在酸化的蚀坑内,Cr可降低钢基体的电位,从而促进蚀坑的扩展;而Ni的添加则提高钢基体的电位,从而有助于降低钢的点蚀扩展速度。  相似文献   

18.
N80#油管钢在含H2S酸性溶液中的腐蚀行为   总被引:6,自引:0,他引:6  
用稳态极化法、阳极动电位扫描法和交流阻抗法研究了酸性溶液中pH值和H2S的浓度 对N80#油管钢腐蚀行为的影响.结果表明:随着溶液pH值的减小、H2S浓度的增大N80#油 管钢的腐蚀速率加快;HAc NaAc体系中无H2S时,油管钢在活性溶解过程中生成的吸附性 中间产物是Fe(OH)ad,而加入H2S后,则生成了另一种吸附性中间产物—Fe(SH) ad.  相似文献   

19.
摘要采用模拟“I 8—8不锈钢/c卜”体系腐蚀裂缝形成过程不同阶段的闭塞区溶液.以电化学方法研究了1.8—8不锈钢加载到屈服后在这些溶液中的腐蚀行为。结粜表明:当溶液pH值低于一临界值(约】.8)后受力试样的腐蚀开始加速.而不受力试样加速腐蚀的临界pH值则较低.约为1.5。低于临界值,受力与未受力试样的商蚀电位都从约一200mY.SCE(位于钝化区)突然下降到一400mY左右(处于活化区).表明钝化膜完全破裂。受力屈服后合金的钝化能力变差。将上述闭塞区溶液中测得的动电位极化曲线上的特征电位.电位一时间曲线上所得到的稳定开路电位.放氢平衡线和免蚀线.以及闭塞区腐蚀和放氢动力学曲线等叠加绘制而成的实验电位一pH图,能解释应力腐蚀裂缝内的热力学和动力学行为。  相似文献   

20.
利用动电位扫描技术和慢应变速率拉伸试验(SSRT)以及扫描电子显微镜(SEM)研究了库尔勒土壤模拟溶液中不同外加阴极电位下X80管线钢焊接接头的应力腐蚀开裂(SCC)行为。结果表明:阴极电位对X80钢焊接接头处的SCC敏感性影响较为明显。拉伸试样全部断裂在焊缝或热影响区。在Ecorr下,金属表面裂纹萌生于点蚀坑,试样开裂为阳极溶解机制。当外加电位为-800 m V至-900 m V时,金属处于阴极保护电位区,此时金属的SCC敏感性较低,其开裂机制为阳极溶解和氢致开裂混合机制。当外加电位小于等于-950 m V时,外加电位越低,材料的SCC敏感性越大,此时金属SCC行为表现为氢脆机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号