首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flank wear progression and wear mechanisms of uncoated, coated with PVD applied single-layer TiAlN, and CVD applied multi-layer MT-TiCN/Al2O3/TiN cemented carbide inserts were analyzed during dry turning of hardened AISI 4340 steel (35 HRC). Experimental observations indicate that by applying a coating to the uncoated insert the limiting cutting speed increase from 62 to 200 m/min, which further extends up-to 300–350 m/min when using multi-layer coating scheme. Relatively lower wear rate seen when using single-layer TiAlN coated inserts. However, after removal of the thin layer of coating the wear rate increase rapidly, subsequently dominates the wear rate of multi-layer coated inserts. Cutting forces; especially axial and radial components have also shown the similar behavior and increase rapidly when the tool failure occurs. Flank wear, crater wear and catastrophic failure are the dominant forms of tool wear. Digital microscope and SEM images coupled with elemental analysis (EDAX) have been taken at various stages of tool life for understanding the wear mechanisms.  相似文献   

2.
《Wear》1987,117(1):37-48
The erosion behavior of AISI 4140 steel under various heat treatment conditions was investigated. A variety of microstructures, such as the primary and tempered martensites, varying proportions of martensite and bainite, cementite spheroids embedded in a ferrite matrix and ferrite and pearlite were obtained. The erosion tests were performed in a sand-blast-type test rig. Except in the region where temper embrittlement occurred, the erosion decreased with increasing tempering temperatures. Erosion decreased with the increasing percentage of bainite in the austempered condition and also with increasing tempering time during spheroidization. From the point of view of the mechanical properties, erosion decreased with increasing ductility and decreasing hardness or ultimate strength. The abraded surfaces were also studied using scanning electron microscopy.  相似文献   

3.
4.
The aim of this work is to define the cutting conditions that allow the dry drilling of carbon fiber reinforced epoxy (CFRE) composite materials taking into consideration the quality of the drilled holes (the exit delamination factor and the cylindricity error) and the optimum combination of drilling parameters. A further aim is to use grey relational analysis to improve the quality of the drilled holes. The machining parameters were measured according to 33 full factorial parameter designs (27 experiments with independent process variables). The experiments were carried out under various cutting parameters with different spindle speeds and feed rates. Drilling tests were done using WC carbide, high-speed steel (HSS), and TiN-coated carbide drills. The experiment design was accomplished by application of the statistical analysis of variance (ANOVA). Results show that the thrust force is mainly influenced by the tool materials and the feed rate, which has a strong influence on the exit delamination factor. On the other hand, the spindle speed particularly affects the cylindricity error of the holes. Correlations were established between spindle speed/feed rate and the various machining parameters so as to optimize cutting conditions. These correlations were found by quadratic regression using response surface methodology (RSM). Finally, tests were carried out to check the concordance of experimental results.  相似文献   

5.
Influences of microstructural and textural properties of friction stir processing (FSP) on dry reciprocating wear properties of AISI D2 tool steel are investigated in this study. The mechanical improvement is attributed not only to the homogenous distribution of very small carbides in a refined matrix, but also to significant development of textures during FSP. The excellent wear resistance is ascribed to nanohardness enhancement of the FSPed steel. Dominant shear components of {111} 〈110〉 and {112} 〈111〉 with the lowest Taylor׳s factor and the high density of close-packed planes formation significantly enhance the wear resistance of FSPed sample at 500 rpm.  相似文献   

6.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

7.
Two PVD coated powder metallurgy high speed steel (PM-HSS) gear cutters were investigated when machining helical gears made from AISI 19MnCr5 steel with hardness between 140 and 180 HV. Machining trials were carried out with gear cutters coated with TiAlN (nano layers) and TiN (mono layer). Crater and flank wears were measured and analysed after all the machining trials. Analyses of the worn tools show that the TiAlN coated gear cutter performed better than the TiN coated gear cutter. This can be attributed to its nano layers and the higher hardness of the TiAlN coating. The dominant tool wear mechanisms were adhesion, abrasion, delaminating of the coating layer and chipping of the cutting edge.  相似文献   

8.
Abstract

Machining studies were conducted on a carbon steel workpiece using both untreated and deep cryogenic treated P-20 tungsten carbide cutting tool inserts. The flank wear of deep cryogenic treated carbide tools is lower than that of untreated carbide tools on machining of C45 steel. The cutting force during machining of C45 steel is lower with the deep cryogenic treated carbide tools when compared with the untreated carbide tools. The surface finish produced on machining the C45 steel workpiece is better with the deep cryogenic treated carbide tools when compared with the untreated carbide tools.  相似文献   

9.
While it is well known that thin, hard coatings can reduce tool wear and improve tool life and productivity, there is still little consensus over the degree of advantage coated tools have over their uncoated counterparts. This paper compares the behaviour of titanium nitride- (TiN-) coated and uncoated high speed steel (HSS) tool inserts during turning. Wear maps describing the crater wear characteristics of these tools are used to show that the extent of tool wear reduction due to the coatings depends strongly on the cutting speed and feed rate. The maps also demonstrate that the benefits of TiN coatings on HSS tools may be easily realized over a wide range of machining conditions.  相似文献   

10.
Abstract

Many studies were performed about the influence of minimum quantity lubrication (MQL) technique on cutting performance in the literature, but there is no paper examining the effect of different MQL flow rates and cutting parameters on machinability of AISI 4140 material as a whole. In this study, the effects of different MQL flow rates and cutting parameters on surface roughness, main cutting force and cutting tool flank wear (VB), with great importance among the machinability criteria, and forming as a result of the machining of AISI 4140, were revealed. At the end of the experiments, it was determined that rise of flow rate affected main cutting forces positively to a certain extent; yet, it exhibited no significant effect on surface roughness, but reduced VB. Also, it was observed that both main cutting force and surface roughness increased with the increase of feed, while generally decreased with the increase of cutting speed. It was seen that flank wear was positively affected by the increase in flow rate; and this decreased with the increase in flow rate. R2 values obtained as 99.8% and 99.9% for main cutting forces and surface roughness values modeled statistically with the help of quadratic equations, respectively.  相似文献   

11.
The influence of the hard-alloy substrate and the composite coatings of a tool on its wear resistance in the machining of high-temperature chromium alloys is investigated. The effectiveness of the coated hardalloy tool is determined by the properties of the hard alloy and the coatings. For hard alloys characterized by relatively low strength and crack resistance, the coatings prove ineffective, on account of the brittle failure of the substrate and the consequent destruction of the coating. On alloys with low thermal stability, the coatings are ineffective on account of weakening of the binder at the high temperatures associated with machining. It makes sense to use a hard alloy with mechanical properties such that the coating may operate effectively. Better properties are not needed.  相似文献   

12.
Hard turning with multilayer coated carbide tool has several benefits over grinding process such as, reduction of processing costs, increased productivities and improved material properties. The objective was to establish a correlation between cutting parameters such as cutting speed, feed rate and depth of cut with machining force, power, specific cutting force, tool wear and surface roughness on work piece. In the present study, performance of multilayer hard coatings (TiC/TiCN/Al2O3) on cemented carbide substrate using chemical vapor deposition (CVD) for machining of hardened AISI 4340 steel was evaluated. An attempt has been made to analyze the effects of process parameters on machinability aspects using Taguchi technique. Response surface plots are generated for the study of interaction effects of cutting conditions on machinability factors. The correlations were established by multiple linear regression models. The linear regression models were validated using confirmation tests. The analysis of the result revealed that, the optimal combination of low feed rate and low depth of cut with high cutting speed is beneficial for reducing machining force. Higher values of feed rates are necessary to minimize the specific cutting force. The machining power and cutting tool wear increases almost linearly with increase in cutting speed and feed rate. The combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Abrasion was the principle wear mechanism observed at all the cutting conditions.  相似文献   

13.

During boring process, tool vibration is a major concern due to its overhanging length, which results in high cutting force, poor surface finish, and increase in tool wear. To suppress tool vibration and improve cutting performance, a novel technique in rheological fluid was designed and developed. In this work, a magnetorheological elastomer (MRE) was developed, and parameters, such as piston location, current intensity, and coil winding direction, were considered. Cutting experiments were conducted to obtain a set of parameters that can efficiently control vibration during boring of hardened AISI 4340 steel. Taguchi method was used to optimize the cutting condition, and findings show that the cutting tool embedded with the MRE reduced tool vibration and effectively increased cutting performance.

  相似文献   

14.
研究奥氏体高锰钢切削过程中TiN涂层硬质合金刀具的磨损、破损机制,测量了切削温度并得出后刀面磨损量与 切削时间和切削速度的关系曲线,以及刀具前、后刀面显微磨损、破损形貌和化学变化。结果表明,TiN涂层硬质合金刀 具切削奥氏体高锰钢时耐磨性优于单一硬质合金刀具,且适于低速切削(小于30m/min)。  相似文献   

15.
In this paper, the Taguchi method and regression analysis have been applied to evaluate the machinability of Hadfield steel with PVD TiAlN- and CVD TiCN/Al2O3-coated carbide inserts under dry milling conditions. Several experiments were conducted using the L18 (2 × 3 × 3) full-factorial design with a mixed orthogonal array on a CNC vertical machining center. Analysis of variance (ANOVA) was used to determine the effects of the machining parameters on surface roughness and flank wear. The cutting tool, cutting speed and feed rate were selected as machining parameters. The analysis results revealed that the feed rate was the dominant factor affecting surface roughness and cutting speed was the dominant factor affecting flank wear. Linear and quadratic regression analyses were applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for minimum surface roughness and flank wear in the milling the Hadfield steel.  相似文献   

16.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

17.
The wear of nitride ceramic inserts in machining gray cast iron castings is considered. A model of this process is formulated and, on that basis, recommendations are made for improving the inserts.  相似文献   

18.
This paper focuses on the optimisation of drilling parameters using the Taguchi technique to obtain minimum surface roughness (Ra) and thrust force (Ff). A number of drilling experiments were conducted using the L16 orthogonal array on a CNC vertical machining centre. The experiments were performed on AISI 316 stainless steel blocks using uncoated and coated M35 HSS twist drills under dry cutting conditions. Analysis of variance (ANOVA) was employed to determine the most significant control factors affecting the surface roughness and thrust force. The cutting tool, cutting speed and feed rate were selected as control factors. After the sixteen experimental trials, it was found that the cutting tool was the most significant factor on the surface roughness and that the feed rate was the most significant factor on the thrust force. The results of the confirmation experiments showed that the Taguchi method was notably successful in the optimisation of drilling parameters for better surface roughness and thrust force.  相似文献   

19.
In this investigation, the microstructural, mechanical and tribological properties of plasma and pulse plasma nitrided AISI 4140 steel have been investigated in comparison to hardened steel. The influence of nitriding case depth, as well as the presence of a compound layer, have been tribologically examined for both dry and lubricated sliding. Testing was carried out on a pin‐on‐disc machine in which surface‐treated pins were mated to hardened ball bearing steel discs. The surface treated samples were characterised using metallographic, SEM, microhardness and profilometric techniques, before and after wear testing. The resulting wear loss and coefficient of friction were monitored as a function of load and of test time. The results showed improved tribological properties of the AISI 4140 steel after plasma and pulse plasma nitriding as compared to the hardened steel, in both dry and lubricated sliding. However, the compound layer should be removed from the surface, either by mechanical means or by decreasing the amount of nitrogen in the nitriding atmosphere, in order to avoid impairment of the tribological properties by fracture of the hard and brittle compound layer, followed by formation of hard abrasive particles.  相似文献   

20.
Said Jahanmir 《Wear》1981,74(1):51-65
Wear tests were conducted using AISI 4340 steel sliding on AISI 01 tool steel under boundary lubrication conditions. The AISI 4340 steel was heat treated to obtain different microstructures and hardness levels. The results indicated that the wear behavior depends on the heat treatment procedure. It was found that hardness alone cannot be used as a measure of wear and that the microstructure and other mechanical properties should also be used. Chemical reaction products containing phosphorus, sulfur and zinc were found on the wear surfaces lubricated with a fully formulated light oil containing zinc dithiophosphates. The chemically reacted film was nonuniform and consisted of patches 1–1500 μm in size. The larger patches were formed on the surface of steel with a pearlite-ferrite microstructure and resulted in a high wear rate. In contrast, the small patches and the thin blue and brown films were formed on the wear surface of tempered martensite steel and produced low wear rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号