首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
祝柏林  郑思龙  谢挺  吴隽 《材料工程》2021,49(11):98-104
以Zn/ZnO/ZnF2混合物为靶材,在衬底温度(Ts)为150℃和300℃、溅射气氛为Ar+O2和Ar+H2下反应溅射制备F掺杂ZnO(FZO)薄膜,研究气体流量、Ts以及溅射气氛对薄膜结构及透明导电性能的影响.结果表明:对于Ar+O2下制备的FZO薄膜,Ts=300℃时有利于制备出具有(002)择优取向、结晶度高、压应力低且透明导电性能较好的薄膜.对于Ar+H2下制备的薄膜,Ts增大到300℃虽然提高了薄膜结晶度和透光性,降低了压应力,但薄膜厚度明显降低,薄膜导电性能变差.比较两种气氛下制备的FZO薄膜,发现Ar+H2下制备的薄膜可在150℃和0.8~3.2 mL·min-1的H2流量范围内得到更好的透明导电性能(电阻率为3.5×10-3Ω·cm,可见光平均透光率为87%).讨论Ar+H2气氛时H等离子的刻蚀作用与H掺杂、A r+O 2气氛时O离子的轰击作用与薄膜氧缺陷的变化、Ts升高时沉积原子反应活性与迁移能力增强以及Eg与载流子浓度的关系.  相似文献   

2.
刘文婷  刘正堂 《真空》2011,48(3):62-66
采用射频磁控溅射法,以HfO2陶瓷作为靶材,在石英衬底上制备了HfO2薄膜.通过椭圆偏振光谱仪(SE)、X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)研究了不同O2/Ar气体流量比对薄膜沉积速率、结构、形貌等的影响.结果表明,随着O2/Ar气体流量比从0增加到0.50,薄膜的沉积速率逐渐下降.O2/Ar气体...  相似文献   

3.
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range.  相似文献   

4.
Zn-doped TiO2 films were prepared by means of pulsed DC reactive magnetron sputtering method using Ti and Zn mixed target. The deposition condition was optimized to produce uniform and transparent TiO2 films. Titanium was in the Ti4+ oxidation state in all Zn-doped TiO2 films. The zinc oxide deposited on the substrate was in the fully oxidized state of ZnO. Increase of zinc concentration inhibited the crystal growth in the TiO2 films. The surface morphology gradually changed from crystalline to amorphous along with the increase of doped zinc concentration. The optical transmittances of these films decreased only slightly with increasing zinc concentration due to very similar band edges of ZnO and anatase TiO2. The doped ZnO had weak influence on light absorption of the TiO2 films. When zinc concentration was very low (<1 at%), the photocatalytic activities of the doped films had nearly no difference from that of pure TiO2 film. Photocatalytic activities decreased obviously in the films containing high amount of zinc oxide.  相似文献   

5.
采用直流磁控溅射法制备了掺钨氧化铟(IWO)透明导电薄膜。研究了薄膜结构、表面形貌、光学和电学性能与各种制备参数之间的依赖关系。X射线衍射(XRD)谱分析结果表明随着基底温度的升高,薄膜的结晶性得到改善。原子力显微镜(AFM)测试结果表明薄膜颗粒均匀,表面平整。研究发现薄膜的电学性能对制备参数非常敏感。在基板温度为380℃的条件下所制备的样品在可见光区域(400~700 nm)的平均透射率(未扣除基底)均大于80%。获得的IWO薄膜最低电阻率为2.8×10-4 ohm.cm,对应载流子迁移率49 cm2V-1s-1,载流子浓度4.4×1020 cm-3,平均透射率83%。  相似文献   

6.
磁控溅射低温制备ZnO:Al透明导电薄膜的正交设计   总被引:1,自引:0,他引:1  
王涛  刁训刚  舒远杰  武哲 《功能材料》2007,38(3):369-372
采用锌铝(2%(质量分数))合金靶,保持真空腔在50℃低温下,结合正交试验表,运用直流反应磁控溅射法制得ZnO∶Al(ZAO)薄膜.通过分光光度计、半导体霍尔效应测试等手段对薄膜各项性能进行了表征.通过正交分析法对所得样品相关特征指标进行分析,在少量的9组实验下,得到溅射功率、时间、靶基距和氧流量百分比4个独立工艺参数对薄膜特性影响的同时,得出直流反应磁控溅射法制备ZAO薄膜的最优组合工艺为:溅射时间20min,靶基距6cm,溅射功率80W,氧流量百分比7%;对应样品的Фic值达4.1050×10-2/Ω,电阻率为3.9×10-4Ω·cm,载流子浓度达1.09×1021/cm3.  相似文献   

7.
For the purpose of using transparent conducting impurity-doped ZnO thin films in liquid crystal display (LCD) applications, the relationship between the properties of dc magnetron sputtering (dc-MS) deposited thin films and the properties of the oxide targets used to produce them is investigated. Both Al-doped and Ga-doped ZnO (AZO and GZO) thin films were deposited on glass substrates using a dc-MS apparatus with various high-density sintered AZO or GZO disk targets (diameter of about 150 mm); the target and substrate were both fixed during the depositions. Using targets with a lower resistivity results in attaining more highly stable dc-MS depositions with higher deposition rates and lower arcing. In addition, dc-MS depositions using targets with a lower resistivity produced improvements in resistivity distribution on the substrate surface. It was found that the oxygen content in deposited thin films decreased as the oxygen content of the target used in the deposition was decreased. As a result, the dc-MS deposition of transparent conducting impurity-doped ZnO thin films suitable for LCD applications requires the preparation of significantly reduced AZO and GZO targets with low oxygen content.  相似文献   

8.
Fluorine-doped ZnO transparent conducting thin films were prepared by radio frequency magnetron sputtering at 150 °C on glass substrate. Thermal annealing in vacuum was used to improve the optical and electrical properties of the films. X-ray patterns indicated that (002) preferential growth was observed. The grain size of F-doped ZnO thin films calculated from the full-width at half-maximum of the (002) diffraction lines is in the range of 18-24 nm. The average transmittance in visible region is over 90% for all specimens. The specimen annealed at 400 °C has the lowest resistivity of 1.86 × 10− 3 Ω cm, the highest mobility of 8.9 cm2 V− 1 s− 1, the highest carrier concentration of 3.78 × 1020 cm− 3, and the highest energy band gap of 3.40 eV. The resistivity of F-doped ZnO thin films increases gradually to 4.58 × 10− 3 Ω cm after annealed at 400 °C for 4 h. The variation of the resistivity is slight.  相似文献   

9.
C. Guillén 《Thin solid films》2006,515(2):640-643
Aluminum-doped zinc oxide thin films have been deposited by DC and MF magnetron sputtering from a ceramic oxide target in argon atmosphere without direct heating of the substrates. The samples were prepared at different predetermined conditions of input power or discharge voltage and the influence upon electronic, optical, and microstructural properties has been investigated. The as-deposited layers show low resistivity, such as 9 × 10− 4 Ω cm minimum for DC excitation and 1.2 × 10− 3 Ω cm for MF mode, with growth rates up to 130 nm/min, and resulting substrate temperatures always below 200 °C. Low resistivity of the films is combined with high transmission, 85-90% in the visible wavelength range (400-800 nm). A strong (002) texture perpendicular to the substrate has been found, with lower strain for DC than for MF sputtering.  相似文献   

10.
Highly conductive and transparent aluminium-doped ZnO (AZO) thin films have been prepared on high-temperature substrates using d.c. magnetron sputtering. In AZO films, the spatial distribution of resistivity across substrates placed parallel to the target was improved by deposition at substrate temperatures above 300 °C. AZO films with resistivities of 2−5 x 10−4 Ω cm were prepared under sputter gas pressures of between 0.6 and 3.0 Pa and at a substrate temperature of 350 °C. In addition, milky AZO films with a textured surface were prepared on high-temperature substrates under sputtering conditions which suppressed the c-axis orientation. A total transmittance of 72% and a haze factor of 63% at a wavelength of 500 nm and a sheet resistance as low as 2.0 Ω sq−1 were obtained in milky AZO films 3 μm thick prepared at a sputter gas pressure of 12 Pa and a substrate temperature of 350 °C.  相似文献   

11.
W.T. Yen  P.C. Yao  Y.L. Chen 《Thin solid films》2010,518(14):3882-1266
In this study, highly conductive films of ZnO:Ga (GZO) were deposited by pulsed direct current magnetron sputtering to explore the effect of post-annealing on the structural, electrical and optical properties of the films. XRD patterns showed that after annealing, the intensity of c-axis preferentially oriented GZO (002) peak was apparently improved. GZO film annealing at 300 °C for 0.5 h exhibits lowest resistivity of 1.36 × 10− 4 Ω cm. In addition, the film shows good optical transmittance of 88% with optical band gap, 3.82 eV. Carrier concentration and optical band gap both decreases with the annealing temperature. Besides, the near-infrared transmittance at 1400 nm is below 5%, while the reflectivity at 2400 nm is as high as 70%.  相似文献   

12.
磁控反应溅射制备的Ta2O5薄膜的光学与介电性能   总被引:1,自引:0,他引:1  
采用直流磁控反应溅射技术,在不同的Ar/O2比条件下制备了系列Ta2O5薄膜样品,采用紫外.可见光透射光谱和椭偏光谱测试分析技术,研究了Ta2O5薄膜在可见光范围内的透射率、折射率和消光系数;同时还采用HP 4192A阻抗分析仪测试分析了样品在500Hz~13MHz频段的介电谱,结果表明在300~700nm的可见光波长范围内,氧化钽薄膜的消光系数k→0,折射率>2.0,透射率大约80%。500Hz下的低频介电常数5的典型值为20.1。损耗角正切tgδ为19.9。  相似文献   

13.
陈小焱  王璟  丁雨田 《功能材料》2013,44(1):139-142
运用直流磁控溅射法,采用ZAO陶瓷靶材(Al2O3相对含量2%(质量分数)),结合正交实验表通过改变制备工艺中的基片温度、溅射功率、氧流量百分比等参数,在普通玻璃衬底上制备得到ZnO∶Al(ZAO)透明导电薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计、四探针测试仪对样品的晶体结构、表面形貌、光电性能进行表征分析。通过正交分析法得出直流磁控溅射法制备ZAO薄膜的最佳组合工艺为基片温度200℃,溅射功率40W,氧流量百分比20%,退火温度400℃,获得薄膜样品最低方块电阻11Ω/□,薄膜具有最好的发光性能,适合作为薄膜太阳电池的透明导电电极。  相似文献   

14.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

15.
Nitrogen-doped indium tin oxide (N-ITO) thin films are deposited on unheated ITO glass substrates in this study. The structural properties of the N-ITO thin films, determined by X-ray diffraction (XRD) and Raman scattering, show that the indium nitride (InN) phase is liable to form in N-ITO films prepared in 20% N2. A broad XRD peak around 2θ = 33° and Raman peak around 490 cm 1 are assigned to the InN phase, but no such peak is observed from the ITO film. Hence, the bandgap is narrowed by N-doping for absorbing light of longer wavelengths of ~ 500 nm. However, under illumination by ultraviolet, the N-ITO film prepared in 20% N2 exhibits the least photocurrent response, which is less than one third that of the N-ITO catalyst that was doped in 16.4% N2. This result is attributed mostly to the fact that the valence and conduction band potentials are not positioned properly between the newly formed InN and host ITO phases, rendering inefficient inter-semiconductor electron transfer. Therefore, higher N-doped samples exhibit a lower photocurrent response. Interestingly, the N-ITO film prepared in 16.4% N2 exhibits the highest photocurrent density of about 165.5 μA/cm2 at an applied bias of 1.2 V. This implies that the N-ITO films should be prepared at a low N2 ratio to ensure a favorable photoelectrochemical activity.  相似文献   

16.
This paper focuses on the preparation of boron doped ZnO (ZnO:B) films prepared by nonreactive mid-frequency magnetron sputtering from ceramic target with 2 wt.% doping source. Adjusting power density, ZnO:B film with low resistivity (1.54 × 10− 3 Ω cm) and high transparency (average transparency from 400 to 1100 nm over 85%) was obtained. Different deposition conditions were introduced as substrate fixed in the target center and hydrogen mediation. Hall mobility increased from 11 to above 26 cm2/V·s, while carrier concentration maintained almost the same, leading to low resistivity of 6.45 × 10− 4 Ω cm. Transmission spectra of ZnO:B films grown at various growth conditions were determined using a UV-visible-NIR spectrophotometer. An obvious blue-shift of absorption edge was obtained while transmittances between 600 nm and 1100 nm remained almost the same. Optical band baps extracted from transmission spectra showed irregular enhancement due to the Burstein-Moss effect and band gap renormalization. Photoluminescence spectra also showed a gradual increase at UV emission peak due to free exciton transition near band gap. We contributed this enhancement in both optical band gap and UV photoluminescence emission to the lattice structure quality melioration.  相似文献   

17.
Jong Hoon Kim 《Thin solid films》2008,516(7):1330-1333
Ga doped ZnO (GZO) thin films were prepared by rf-magnetron sputtering on glass substrate for window heater applications. Electrical and optical properties of these films were analyzed in order to investigate on substrate temperature and rf power dependencies. High quality GZO films with a resistivity of 1.30 × 10− 4 Ω cm and a transparency above 90% in the visible range were able to be formed. GZO films have been patterned on glass substrate as a line heater. This GZO line heater showed the rapid heat radiation property from room temperature to 90 °C for 22 s at the applied voltage of 42 V. These results could provide a possibility to use GZO as effective transparent heaters.  相似文献   

18.
ZnAlO films alloyed with various group-II elements (Be, Mg, Ca, Sr) were sputter grown and its effects on the optical and electrical properties of the films were studied. It was observed that addition of Be most efficiently increases the Eg (∼3.8 eV) but results in high resistivity (0.5 Ωcm), while an addition of Mg resulted in a relatively low resistivity (∼7 × 10−4 Ωcm) and moderate increase in Eg (3.7 eV). Other films showed high resistivity (∼1 Ωcm) and relatively low Eg (3.5 eV for ZnSrAlO). It was proposed that the difference in the ionic radii between the alloying elements and the Zn host ion resulted in lattice strain and formation of non-conductive clusters, which would act as the trap centers and scattering centers, reducing the carrier density and the mobility.  相似文献   

19.
Ga doped ZnO(GZO)/Cu/GZO multilayers were deposited by magnetron sputtering on polycarbonate substrates at room temperature. We investigated the structural, electrical, and optical properties of multilayers at various thicknesses of Cu and GZO layers. The lowest resistivity value of 3.3 × 10− 5 Ω cm with a carrier concentration of 2.9 × 1022 cm− 3 was obtained at the optimum Cu (10 nm) and GZO (10 nm) layer thickness. The highest value of figure of merit φTC is 2.68 × 10− 3 Ω− 1 for the GZO (10 nm)/Cu(10 nm)/GZO(10 nm) multilayer. The highest average near infrared reflectivity in the wavelength range 1000-2500 nm is as high as 70% for the GZO(10 nm)/Cu(10 nm)/GZO(10 nm) multilayer.  相似文献   

20.
《Materials Letters》2007,61(11-12):2262-2265
La-doped ZnO films were prepared by RF magnetron sputtering using different composition powder compacted targets (0, 1, 2, 3 and 5 at.%). All films show a preferred c-axis growth orientation. Furthermore, the (002) diffraction peak shifts to a small angle and the full-width at half-maximum augments with increasing La concentration up to 2 at.%, which indicate that a small quantity of La atoms are incorporated into the ZnO lattice. The average transmittance in the visible range is over 80%, and a blue shift of the absorption edge is observed. With increasing La concentration, the band gap of ZnO films evaluated by the linear fitting linearly increases from 3.270 to 3.326 eV. In the photoluminescence spectra, a strong violet emission peak and a weak green emission band can be observed. The former is due to the electron transition between the defect energy levels, associated with the interfacial traps existing at the ZnO grain boundaries, and valence band. The latter could be ascribed to crystal defects related to oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号