首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研制水蒸气发生器 ,并用水蒸气作为冷却润滑剂进行切削试验时发现 ,切削力可比干切减少 10 %左右 ,比用乳化液减少 6%左右 ,并初步分析水蒸气作冷却润滑剂的作用机理  相似文献   

2.
3.
4.
5.
为实现304不锈钢的绿色切削,以过热水蒸气作冷却润滑介质,用Al2O3-TiC复相陶瓷刀具对304不锈钢进行单因素切削试验.试验结果表明:与干切削相比,用过热水蒸气冷却润滑切削时主切削力减小了6% ~17%,加工表面硬化程度降低了3%~6%,并具有较高的加工表面质量.根据试验结果和冷却润滑作用机理分析可知,过热水蒸气具有较好的冷却润滑作用,且廉价无污染,有望实现304不锈钢的绿色切削.  相似文献   

6.
The critical cut thickness is determined in planing various materials. With greater thickness, the use of lubricant and coolant fluid reduces the cutting forces. Therefore, with limited rigidity of the technological system, the use of lubricant and coolant fluid is only expedient at above-critical cut thickness.  相似文献   

7.
基于切削声音的刀具磨损状态识别研究   总被引:1,自引:0,他引:1  
人工神经网络可以实现多特征信息的融合,将基于BP神经网络,建立各频率段能量百分比与刀具磨损的映射关系,进行刀具磨损状态识别的研究。最后在Labview环境下调用Matlab神经网络程序,初步实现了刀具磨损的识别。  相似文献   

8.
9.
10.
11.
12.
《Wear》2002,252(1-2):135-149
A modeling of diffusion wear is proposed for high speed cutting processes. Diffusion at the tool–chip interface is controlled by the contact temperature. Cratering and tool life are analyzed in terms of cutting conditions (cutting velocity, feed, rake angle), friction characteristics and material properties. Optimal cutting conditions can be found with respect to tool life and volume of material removal. Comparison with experimental observations show the potentiality of the modeling.  相似文献   

13.
Anshu D.  A.K.   《Wear》2009,267(9-10):1723-1730
Minimal Quantity of Lubricant (MQL) application of cutting fluids (CFs), or near-dry machining, is being proposed as an environmentally and economically viable alternative to conventional flooding under conditions where dry cutting is not feasible. However, several issues related to CF application effects on cutting tool wear need further clarification, especially, the interactions of CF application with tool-coatings and chip-breakers, both of which are widely employed in industrial cutting tools, need further study. This paper presents the results of an experimental study into the effects of different CF application methods on tool wear during machining of AISI 1045 steel using flat-faced and grooved, coated carbide cutting tools. The results provide insight into the mechanisms of tool wear in the presence of CFs, as well as the influence of chip-breaking geometric features, and tool-coating systems, on CF action. The wear mode was observed to be dictated by thermal considerations, rather than by any friction reduction capability of different CF application methods, and forced attempts at achieving lubricating action were negatively affecting tool life under some conditions.  相似文献   

14.
15.
16.
17.
18.
19.
High-pressure coolant (HPC) delivery is an emerging technology that delivers a high-pressure fluid to the tool and workpiece in machining processes. High fluid pressure allows for better penetration of the fluid into the cutting zone, enhancing the cooling effect, and decreasing tool wear through lubrication of the contact areas. The main objective of this work is to understand how tool wear mechanisms are influenced by fluid pressure under different cutting speeds in the finish turning of AISI 1045 steel using coated carbide tools. The main finding was that the use of a lower cutting speed (v c ?=?490 m/min) in dry cutting resulted in tool life close to that obtained with cutting fluid, but when the cutting speed was increased (v c ?=?570 m/min), the high-pressure coolant was effective in prolonging the life of the cutting tool. It was also concluded that, regardless of the cutting speed and cooling/lubrication system, the wear mechanisms were the same, namely abrasion and attrition.  相似文献   

20.
微细加工中的微型铣床、微刀具磨损及切削力的实验研究   总被引:2,自引:0,他引:2  
由于微机电系统(Micro Electro Mechanical System,MEMS)在微小零件加工中存在不足,微细铣削加工作为一项补充技术正在日益受到人们的重视。介绍了研制的微型精密三轴联动立式铣床(300 mm×300 mm×290 mm)的系统构成,开发了中文控制软件并集成了视频采集系统,此设备在薄膜型工件(膜厚65 μm)的微槽加工中取得了满意的效果(膜厚方向上材料去除率90.7%,成品率大于80%)。对微径端铣刀进行了力学特性分析,并通过刀具磨损试验分析了微径硬质合金TiA1N涂层及非涂层铣刀的磨损机理。最后通过槽铣硬铝2A12的试验研究了切削用量(主轴转速、背吃刀量和每齿进给量)对微细铣削力的影响,为微细铣削切削机理的深入研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号