首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳纳米管增强2024铝基复合材料的力学性能及断裂特性   总被引:1,自引:0,他引:1  
为了研究碳纳米管对铝基复合材料性能的影响,采用冷等静压、热挤压方法制备了质量分数1.0%的多壁碳纳米管增强2024Al基复合材料.采用扫描电镜、透射电镜和拉伸试验对复合材料的显微组织进行了观察和分析,并对其力学性能进行了测试.结果表明,碳纳米管均匀地分布在复合材料中,碳纳米管和铝基体的界面结合良好,没有发现界面产物Al4C3的形成;复合材料的断口上存在大量的撕裂棱,韧窝,并涉及碳纳米管的拔出或拔断与桥接,与2024Al基体材料相比,复合材料的硬度、弹性模量和抗拉强度显著提高,同时复合材料的延伸率却并不下降.碳纳米管的加入可以显著提高铝基复合材料的力学性能.  相似文献   

2.
《Materials Letters》2007,61(14-15):3229-3231
A multi-walled carbon nanotube (MWNTs) reinforced 2024Al composite was successfully fabricated by a procedure of mixing 2024Al powders and CNTs, cold isostatic press and hot extrusion. The damping behaviors of the composite were investigated with frequency of 0.5, 1.0, 5.0, 10, 30 Hz, at a temperature of 25–400 °C. The experimental results show that the frequency significantly affects the damping capacity of the composite when the temperature is above 230 °C; meanwhile, the damping capacity of the composite with a frequency of 0.5 Hz reaches 975 × 10 3, and the storage modulus is 82.3 GPa when the temperature is 400 °C, which shows that CNTs are a promising reinforcement for metal matrix composites to obtain high damping capabilities at an elevated temperature without sacrificing the mechanical strength and stiffness of a metal matrix.  相似文献   

3.
C.F. Deng  Y.X. Ma 《Materials Letters》2008,62(15):2301-2303
The coefficient of thermal expansion (CTE) of aluminum matrix composite reinforced with 1.0wt.% multi-wall carbon nanotubes (MWNTs) fabricated by cold isostatic pressing and hot squeeze technique was measured between 25 and 400 °C with a high-precision thermomechanical analyzer, and compared with those of pure aluminum and 2024Al matrix fabricated under the same processing. The results show that the CTE of the composite obviously reduces in relation to those of pure aluminum and 2024Al matrix due to the introduction of MWNTs. The addition of 1.0wt.% MWNTs to 2024Al matrix decreases the CTE by as much as 12% and 11% compared with those of pure aluminum and 2024Al matrix at 50 °C, respectively, which indicates that carbon nanotube reinforced metal matrix composite may be a promising materials with low CTE.  相似文献   

4.
Carbon nanotubes reinforced pure Al (CNT/Al) composites were produced by ball-milling and powder metallurgy. Microstructure and its evolution of the mixture powders and the fabricated composites were examined and the mechanical properties of the composites were tested. It was indicated that the CNTs were gradually dispersed into the Al matrix as ball-milling time increased and achieved a uniform dispersion after 6 h ball-milling. Further increasing the ball-milling time to 8–12 h resulted in serious damage to the CNTs. The tensile tests showed that as the ball-milling time increased, the tensile and yield strengths of the composites increased, while the elongation increased first and then decreased. The strengthening of CNTs increased significantly as the ball-milling time increased to 6 h, and then decreased when further increasing the ball-milling time. The yield strength of the composite with 6 h ball-milling increased by 42.3% compared with the matrix.  相似文献   

5.
Aluminium (Al) matrix composites reinforced with either 0.5 wt% graphene oxide (GO) or 0.5 wt% carbon nanotubes (CNTs) were hot extruded from ball-milled powders. A control, pure Al bar was also fabricated. Microstructural examination, including Raman mapping, showed a relatively poor dispersion of the carbon nanomaterials within the Al matrix, particularly in the case of the CNTs. Consequently, while the mean grain size of the Al matrix remains invariant with the addition of CNTs, the Al/GO composite exhibits reduced grain size compared to pure Al due to the pinning effect of the reinforcement. Moreover, the addition of both carbonaceous materials resulted in a slight decrease in the typical extrusion duplex <111> + <100> fibre texture intensity. This weakening of the texture was more pronounced in the Al/GO composite, partly due to the pinning effect of the reinforcement. In agreement with their relative mean grain sizes, the Al/GO composite shows an improved mechanical performance over pure Al. Despite the similarity of the mean grain sizes, the Al/CNT composite displays comparable hardness and a decreased compressive yield stress relative to the pure Al. In the absence of chemical reactions at the interfaces, this was attributed to a low efficiency of load transfer from the Al matrix to the reinforcement resulting from the large extent of agglomeration of CNTs.  相似文献   

6.
Five volume percent of carbon nanotubes and 2024Al alloy powder were mixed with ball milling method, and then the composite was fabricated at 873 K by hot pressing sintering technique. The microstructure of the composite was investigated using optical microscopy, transmission electron microscopy, and X-ray diffraction. The experimental results showed that carbon nanotubes are reacted and changed into Al4C3. Nano-Al4C3 phases with needle shape are distributed mainly on Al grain boundaries; meanwhile some of them exist within Al grains. The reaction mechanism of carbon nanotubes-Al is discussed.  相似文献   

7.
采用卧式高能球磨法制备0%~2%CNTs/Al5083(质量分数)复合材料,研究球磨时间和CNTs含量对复合材料性能的影响。采用扫描电镜(SEM)和透射电镜(TEM)对复合材料的形貌进行表征,测试复合材料的抗拉强度及硬度。结果表明:当球磨时间为1.5h时,CNTs可均匀分散在Al5083基体中;CNTs质量分数为1.5%时,CNTs/Al5083界面结合力最好,复合材料的抗拉强度和硬度分别为188.8MPa和136HV,比未加CNTs的Al5083合金基体分别提高了32.2%和36%。  相似文献   

8.
Dense carbon nanotubes (CNTs) were grown uniformly on the surface of carbon fibers and glass fibers to create hierarchical fibers by use of floating catalyst chemical vapor deposition. Morphologies of the CNTs were investigated using scanning electronic microscope (SEM) and transmission electron microscope (TEM). Larger diameter dimension and distinct growing mechanism of nanotubes on glass fiber were revealed. Short carbon and glass fiber reinforced polypropylene composites were fabricated using the hierarchical fibers and compared with composites made using neat fibers. Tensile, flexural and impact properties of the composites were measured, which showed evident enhancement in all mechanical properties compared to neat short fiber composites. SEM micrographs of composite fracture surface demonstrated improved adhesion between CNT-coated fiber and the matrix. The enhanced mechanical properties of short fiber composites was attributed to the synergistic effects of CNTs in improving fiber–matrix interfacial properties as well as the CNTs acting as supplemental reinforcement in short fiber-composites.  相似文献   

9.
The interest in carbon nanotubes (CNTs) as reinforcements for aluminium (Al) has been growing considerably. Efforts have been largely focused on investigating their contribution to the enhancement of the mechanical performance of the composites. The uniform dispersion of CNTs in the Al matrix has been identified as being critical to the pursuit of enhanced properties. Ball milling as a mechanical dispersion technique has proved its potential. In this work, we use ball milling to disperse up to 5 wt.% CNT in an Al matrix. The effect of CNT content on the mechanical properties of the composites was investigated. Cold compaction and hot extrusion were used to consolidate the ball-milled Al–CNT mixtures. Enhancements of up to 50% in tensile strength and 23% in stiffness compared to pure aluminium were observed. Some carbide formation was observed in the composite containing 5 wt.% CNT. In spite of the observed overall reinforcing effect, the large aspect ratio CNTs used in the present study were difficult to disperse at CNT wt.% greater than 2, and thus the expected improvements in mechanical properties with increase in CNT weight content were not fully realized.  相似文献   

10.
《Composites Part A》2007,38(2):301-306
Aluminum composites reinforced with CNTs were fabricated by pressureless infiltration process and the tribological properties of the composites were investigated. Al has been infiltrated into CNTs–Mg–Al preform by pressureless infiltration in N2 atmosphere at 800 °C. By means of scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS), it was found that CNTs are well dispersed and embedded in the Al matrix. The friction and wear behaviors of the composite were investigated using a pin-on-disk wear tester under unlubricated condition. The tests were conducted at a sliding speed of 0.1571 m/s under an applied load of 30 N. The experimental results indicated that the friction coefficient of the composite decreased with increasing the volume fraction of CNTs due to the self-lubrication and unique topological structure of CNTs. Within the range of CNTs volume fraction from 0% to 20%, the wear rate of the composite decreased steadily with the increase of CNTs content in the composite. The favorable effects of CNTs on wear resistance are attributed to their excellent mechanical properties, being well dispersed in the composite and the efficiency of the reinforcement of CNTs.  相似文献   

11.
采用原位化学气相沉积、短时球磨和填加造孔剂法相结合的工艺制备了碳纳米管(CNTs)/Al复合泡沫,研究了其在压缩-压缩循环载荷下的力学性能及失效机制。结果表明,CNTs/Al复合泡沫的应变-循环次数曲线经历线弹性、应变硬化及应变快速增长三个阶段。不同于泡沫铝的逐层坍塌变形失效模式,CNTs/Al复合泡沫疲劳失效的主要原因是大量剪切变形带的形成,试样出现快速的塑性变形。此外,CNTs含量为2.5wt%、孔隙率为60%的复合泡沫试样的疲劳强度相比于泡沫铝提高了92%。CNTs的均匀分布及增强相与基体材料之间良好的界面结合性保证了疲劳载荷能够以剪切力的形式从基体传递到CNTs上,使其充分发挥自身高强度、高韧性的特点,进而提高了疲劳性能。   相似文献   

12.
Nanocrystalline Al–Si alloy-based composites containing carbon nanotubes (CNTs) were produced by hot rolling ball-milled powders. During the milling process, the grain size was effectively reduced and the Si element was dissolved in the Al matrix. Furthermore, CNTs were gradually dispersed into the aluminum powders, providing an easy consolidation route using a thermo-mechanical process. The composite sheet containing 3 vol.% of CNTs shows ~520 MPa of yield strength with a 5% plastic elongation to failure.  相似文献   

13.
The structural evolution of carbon nanotubes (CNTs) during mechanical milling was investigated using SEM, TEM, XRD, XPS and Raman spectroscopy. The study showed that milling of the CNTs alone introduces defects but preserves the tubular structure. When milling the CNTs with aluminum (Al) powder in order to produce a composite, Raman spectroscopy has shown that most of the nanotubes are destroyed. During sintering of the CNT/Al milled mixture, the carbon atoms available from the destruction of the nanotubes react with the Al to form aluminum carbide (Al4C3). The effect of milling on the Al matrix was also studied.  相似文献   

14.
1.5 vol.% and 4.5 vol.% carbon nanotubes reinforced 2009Al (CNT/2009Al) composites with homogeneously dispersed CNTs and refined matrix grains, were fabricated using powder metallurgy (PM) followed by 4-pass friction stir processing (FSP). Tensile properties of the composites between 293 and 573 K and the coefficient of thermal expansion (CTE) from 293 to 473 K were tested. It was indicated that load transfer mechanism still takes effect at temperatures elevated up to 573 K, thus the yield strength of the 1.5 vol.% CNT/2009Al composite at 423–573 K, was enhanced compared with the 2009Al matrix. However, for the 4.5 vol.% CNT/2009Al composite, the yield strength at 573 K was even lower than that for the matrix, due to the quicker softening of ultrafine-grained matrix. Compared with the 2009Al matrix, the CTEs of the composites were greatly reduced for the zero thermal expansion and high modulus of the CNTs and could be well predicted by the Schapery’s model.  相似文献   

15.
By using pure titanium powder coated with un-bundled multi-wall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with the CNTs was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.  相似文献   

16.
Magnesium (Mg) composite reinforced with carbon nanotubes (CNTs) having superior mechanical properties was fabricated using both pure Mg and AZ61 Mg alloy matrix in this study. The composites were produced via powder metallurgy route containing wet process using isopropyl alcohol (IPA) based zwitterionic surfactant solution with unbundled CNTs. The produced composites were evaluated with tensile test and Vickers hardness test and analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and electron back scattered diffraction (EBSD). As a result, only with AZ61 Mg alloy matrix, tensile strength of the composite was improved. In situ formed Al2MgC2 compounds at the interface between Mg matrix and CNTs effectively reinforced the interfacial bonding and enabled tensile loading transfer from the Mg matrix to nanotubes. Furthermore, it was clarified that the microstructures and grain orientations of the composite matrix were not significantly influenced by CNT addition.  相似文献   

17.
Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.  相似文献   

18.
Carbon fiber-reinforced epoxy composites modified with carbon nanotubes (CNTs) were fabricated and characterized. High-energy sonication was used to disperse CNTs in the resin, followed by infiltration of fiber preform with the resin/CNT mixture. The effects of sonication time on the mechanical properties of “multiscale” composites, which contain reinforcements at varying scales, were studied. A low CNT loading of 0.3 wt% in resin had little influence on tensile properties, while it improved the flexural modulus, strength, and percent strain to break by 11.6%, 18.0%, and 11.4%, respectively, as compared to the control carbon fiber/epoxy composite. While sonication is an effective method to disperse CNTs in a resin, duration, intensity, and temperature need to be controlled to prevent damages imposed on CNTs and premature resin curing. A combination of Halpin–Tsai equations and woven fiber micromechanics was used in hierarchy to predict the mechanical properties of multiscale composites, and the discrepancies between the predicted and experimental values are explained.  相似文献   

19.
Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or completely new set of physical properties due to the addition of CNTs. However, the physics of interactions between CNT and its surrounding matrix material in such nano-composites has yet to be elucidated and methods for determining the parameters controlling interfacial characteristics such as interfacial shear stress, is still challenging. An improvement of the physical properties of polymer nanocomposites, based on carbon nanotubes (CNTs), is addicted to a good dispersion and strong interactions between the matrix and the filler.  相似文献   

20.
研究了CNTs的加入对Mg-9Al镁基复合材料时效行为的影响,探讨了时效处理过程中微观组织、力学性能及导热性能的演变规律。结果表明:添加的CNTs增大了基体合金中铝元素的固溶度,并在时效过程中限制晶界的迁移,在二者共同作用下,促进基体中连续β-Mg_(17)Al_(12)相的析出,且随着CNTs含量的增加,连续析出的比例增大;与基体呈共格关系的杆状连续析出相能够有效地阻碍位错运动,提高复合材料的力学性能,其中峰时效态0.4CNTs/Mg-9Al复合材料的屈服强度、抗拉强度、热扩散系数和热导率分别为275 MPa,369 MPa,34.5 mm^(2)/s和68.4 W/(m·K),相较于时效前Mg-9Al合金分别提升了17%,23%,43%和45%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号