首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《铸造技术》2017,(1):65-67
利用光学显微镜、硬度试验机、拉伸试验机以及箱式电阻炉设备,研究了不同正火处理工艺对球墨铸铁QT800-6力学性能的影响。结果表明:正火工艺处理后,球铁基体组织中的铁素体向珠光体转变后组织为少量铁素体基体+珠光体+球状石墨。大多数的铁素体转变为珠光体,珠光体数量在基体组织中大大增加,正火温度860℃保温1 h风冷获得的球墨铸铁具有良好的综合力学性能。  相似文献   

2.
研究了ZGCr28高铬铸钢的铸态、不同温度正火和不同温度回火热处理的组织和性能。结果表明,ZGCr28铸态硬度较低,正火加热温度为1 040℃时空冷铸件具有较高的硬度,100~200℃回火高铬铸钢具有良好的韧性,铸态和热处理后的组织为铁素体、(Fe.Cr)23C6碳化物和少量的残余奥氏体。提出了ZGCr28高铬铸钢的最佳热处理工艺。  相似文献   

3.
试验室研究了Cr12Mo1V1钢的退火工艺,讨论了加热温度、保温时间、等温温度对显微组织和硬度的影响,并进行了不同退火硬度对切削性能的影响试验。试验结果表明:随着加热温度的升高、保温时间的延长和等温温度的提高,显微组织中粒状珠光体的碳化物数量减少、由成堆分布的质点转变成均匀分布的球状,同时硬度逐渐降低,切削性能也逐渐改善,最佳工艺为890℃加热后830℃等温退火。在工业化生产中对大尺寸钢材的应用效果较好,硬度202~214HB,切削后表面粗糙度值1.452~1.519μm。  相似文献   

4.
《铸造技术》2016,(11):2346-2348
对QT780-3珠光体型球墨铸铁进行正火处理,分析不同正火温度对球墨铸铁组织、耐磨性及力学性能的影响。结果表明:在一定正火温度范围内,随着正火温度的提高珠光体层片间距变小,铁素体分布均匀性得到改善,同时耐磨性及力学性能提高。当正火温度较高时,珠光体组织粗化,耐磨性及力学性能降低。正火条件为900℃×2 h时,珠光体层片间距最小,铁素体分布均匀,QT780-3珠光体型球墨铸铁综合性能最佳。  相似文献   

5.
采用箱式电阻炉对输电铁塔用Q460钢板进行了不同工艺的正火和回火处理,采用光学显微镜对热处理试样显微组织进行了观察,并对拉伸、冲击、硬度进行了检测,研究了热处理对输电塔服役性能的影响。结果表明,钢材正火组织主要为珠光体+铁素体+贝氏体以及少量M-A组织,随正火温度升高,铁素体、珠光体含量逐渐减少,材料拉伸性能小幅提高,冲击功和硬度增加;随回火温度升高,M-A岛逐渐分解,贝氏体基体上析出较多颗粒状碳化物,钢的抗拉强度和屈服强度均降低,伸长率先小幅增加,在温度超过400℃后有所降低,硬度则几乎不变,860℃正火钢断面收缩率先降低后升高,冲击功先升高后降低,均在回火温度为300℃时达到极值,920℃正火钢断面收缩率和冲击功先升高后几乎保持不变。  相似文献   

6.
一种非调质钢在Gleeble 3800热模拟机上进行试验,测定了该非调质钢在不同冷却速度下膨胀曲线,同时结合金相-硬度法获得了该非调质钢的连续冷却转变时静态CCT曲线、显微组织和维氏硬度,以及等温转变时显微组织和维氏硬度。奥氏体在连续冷却速度分别为0.1、0.5、1℃/s以及在560℃等温转变前后的连续冷却速度为2℃/s,等温时间分别为10、20 min时,转变组织为铁素体+珠光体;奥氏体在560℃等温转变前后的连续冷却速度分别为3、4℃/s,等温时间分别为10、20 min时,转变组织为铁素体+珠光体+微量或少量贝氏体。本研究结果,对下游用户使用圆钢锻造成零件后,获得铁素体+珠光体组织或铁素体+珠光体+微量或少量贝氏体组织的冷却工艺提供了参考。  相似文献   

7.
渗碳钢齿坯锻后采用正火或者等温正火处理,存在冷却不均,工件组织、硬度存在差异,导致热处理变形大,同时需要再次二次加热,增加了能耗,提高了成本。本文利用锻后余热,直接进行等温正火处理:齿坯终锻结束后,直接浸入正火液中冷却,冷却至650~750℃出液,迅速转移到等温炉进行650~680℃等温,使之发生充分的珠光体转变,获得铁素体+珠光体平衡态组织,晶粒大小均匀,无明显混晶,有利于降低热处理变形;硬度可保证在160~175 HB,有利于机加工。  相似文献   

8.
对当前22CrMoH材质齿轮锻件的等温正火工艺进行了分析研究,改进现有工艺为连续式等温正火工艺。结果表明:应用改进后的热处理工艺,锻件能获得均匀的珠光体+铁素体组织,硬度达到150~170HB,符合技术要求,并大大提高了生产效率。  相似文献   

9.
对18CrNiMo7-6齿轮钢进行了温锻余热等温正火工艺研究。结果表明:在温锻余热等温正火工艺中,冷却速度、等温温度、等温时间为关键的工艺参数。较低冷却速度和较高的等温温度,可在有限等温时间内有效提高珠光体的转变量,减少残留奥氏体含量及室温马氏体和贝氏体等非平衡组织,获得理想的组织及性能。以0.1 ℃/s和1 ℃/s冷却速度降至等温正火温度650 ℃保温1 h 后冷却可获得硬度163~164 HBS,F晶粒度10~11.5级,带状组织1.5级,组织及性能均符合技术要求,可具有良好的切削加工性能,并为后续热处理工艺提供理想组织。  相似文献   

10.
采用热模拟试验方法,测定了U75V钢轨连续冷却转变曲线和等温转变曲线,研究不同冷却速度及相变温度对组织转变及硬度的影响。通过研究冷却起始温度对钢轨性能的影响,确定了在线热处理生产开冷温度范围。结果表明:在连续冷却转变试验中,随冷却速度增大,硬度值逐渐增加,组织由珠光体逐渐向马氏体过渡,最佳冷却速度范围为1.5~4.0℃/s。在等温转变试验中,随相变温度降低,硬度逐渐升高,组织由珠光体逐渐向贝氏体过渡。不同开冷温度下显微组织均为珠光体加少量铁素体,开冷温度高于690℃时,试样硬度基本一致。建议在实际生产中,该钢种开冷温度控制在690℃以上,冷却速度控制在1.5~4.0℃/s,以保证组织及硬度满足标准要求。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号