首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work is to study the influence of Mg2+ and Sr2+ dopants on in vitro bone cell–material interactions of electrically polarized hydroxyapatite [HAp, Ca10(PO4)6(OH)2] ceramics with an aim to achieve additional advantage of matching bone chemistry along with the original benefits of electrical polarization treatment relevant to biomedical applications. To achieve our research objective, commercial phase pure HAp has been doped with MgO, and SrO in single, and binary compositions. All samples have been sintered at 1200 °C for 2 h and subsequently polarized using an external d.c. field (2.0 kV/cm) at 400 °C for 1 h. Combined addition of 1 wt.% MgO/1 wt.% SrO in HAp has been most beneficial in enhancing the polarizability in which stored charge was 4.19 μC/cm2 compared to pure HAp of 2.23 μC/cm2. Bone cell–material interaction has been studied by culturing with human fetal osteoblast cells (hFOB) for a maximum of 7 days. Scanning electron microscope (SEM) images of cell morphology reveal that favorable surface properties and dopant chemistry lead to good cellular adherence and spreading on negatively charged surfaces of both Sr2+ and Mg2+ doped HAp samples over undoped HAp. MTT assay results at 7 days show the highest viable cell densities on the negatively charged surfaces of binary doped HAp samples, while positive charged doped HAp surfaces exhibit limited cellular growth in comparison to neutral surfaces.  相似文献   

2.
The electronic structure of CaZr4(PO4)6 was calculated using the CASTEP code and the band gap for CaZr4(PO4)6 can reach up to 4.30 eV. Ca1−xEuxZr4(PO4)6 (0.01  x  1) samples were prepared by a high temperature solid-state reaction method. XRD analysis shows that Eu2+ ion can be totally incorporated into CaZr4(PO4)6 forming complete solid solutions with trigonal lattice. Ca1−xEuxZr4(PO4)6 (0.01  x  1) shows typical broad band emission in wavelength range from 400 to 650 nm for both under ultraviolet (UV) light and X-ray excitation, originating from the 4f65d1  4f75d0 transition of Eu2+ ions. With increasing Eu2+ concentration, there is abnormal blue-shift of the emission peaks for Ca1−xEuxZr4(PO4)6 due to the decreasing crystal field strength and Stokes shift. With increasing temperature in CaZr4(PO4)6: Eu2+, its emission bands show the anomalous blue-shift with decreasing intensity. The overall scintillation efficiency of Ca0.9Eu0.1Zr4(PO4)6 is 1.7 times of that of Bi4Ge3O12 (BGO) powder under the same conditions. In addition, its predominant decay time is about 50 ns at room temperature. The potential application of Eu2+-doped CaZr4(PO4)6 has been pointed out.  相似文献   

3.
Herein, we report the effect of silver ions on the physical, antimicrobial and cytocompatibility properties of wet chemically synthesized silver doped Ca10?xAgx(PO4)6(OH)2 (0.0  x  0.5) hydroxyapatites (HAp). Silver ions containing HAp exhibit the comparable density, hardness and enhanced antimicrobial properties, in comparison to parent HAp. The optical absorption measurements confirm the presence of silver ions in the doped compositions, which are responsible for as increased antimicrobial property of doped HAp materials for x > 0.3. The cytotoxicity behavior of the doped HAp was evaluated using mouse fibroblast (L929) cell line. The important result has been that doped HAp (x > 0.3) exhibit statistically (significant) lower cell viability in comparison to undoped HAp. However, no difference in cellular functionality on doped HAp surfaces, in terms of cell adhesion and proliferation could be qualitatively observed in reference to undoped HAp. In order to explain the observed antimicrobial and cell viability properties, the in vitro release of Ag+ ions has been quantified using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and solubility was measured by weight loss in acetate buffer solution.  相似文献   

4.
In this paper, a series of Ca3 -x-ySry(PO4)2:xEu2 +, (0  x  0.075, 0  y  2.2) phosphors were prepared by flux assisted solid-state reaction method, and their photoluminescence properties were investigated. The β- to β′-phase transition of Ca3 -ySry(PO4)2 for high Sr2 + content was observed from the XRD patterns, and the corresponding optical bandgaps were obtained experimentally. Various Eu2 + emission centers were found, which generate tunable emission depending on the Sr2 + concentration. Broad and intense excitation bands exist in Eu2 + activated Ca3(PO4)2, and the introduction of Sr2 + further extends and enhances the excitation bands beyond 350 nm, which is beneficial to the applications on near ultraviolet LEDs. The morphology measurement reveals that the average size of particles with smooth surface is about 11.2 μm, which is suitable for the practical applications. These results indicate that the Ca3 -x-ySry(PO4)2:xEu2 + phosphors could be promising candidates for LEDs.  相似文献   

5.
Crystalline hierarchical hydroxyapatite [Ca10(PO4)6(OH)2, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.  相似文献   

6.
In this paper, a cyan-emitting phosphor Ca3(PO4)2:Eu2+ (TCP:Eu2+) was synthesized and evaluated as a candidate for white light emitting diodes (WLEDs). This phosphor shows strong and broad absorption in 250–450 nm region, but the emission spectrum is prominent at around 480 nm. The emission intensity of the TCP:Eu2+ was found to be 60% and 82% of that of the commercial BaMgAl10O17:Eu2+ (BAM) under excitation at 340 nm and 370 nm, respectively. Upon excitation at 370 nm, the absolute internal and external quantum efficiencies of the Ca3(PO4)2:1.5%Eu2+ are 60% and 42%, respectively. Moreover, a white LED lamp was fabricated by coating TCP:Eu2+ with a blue-emitting BAM and a red-emitting CaAlSiN3:Eu2+ on a near-ultraviolet (375 nm) LED chip, driven by a 350 mA forward bias current, and it produces an intense white light with a color rendering index of 75.  相似文献   

7.
Hydroxyapatite (Ca10(PO4)6(OH)2) is the most ubiquitous calcium phosphate phase used in implant coatings and more recently in gene/drug delivery applications due to its chemical stability under normal physiological conditions (37 °C, pH  7.5, 1 atm.). However, different calcium phosphate phases, such as brushite (CaH(PO4)?2(H2O)) and tricalcium phosphate (Ca3(PO4)2) which are thermodynamically unstable under physiological conditions are also being explored for biomedical applications. One way of stabilizing these phases under physiological conditions is to introduce magnesium to substitute for calcium in the brushite lattice. The role of magnesium as a stabilizing agent for synthesizing brushite under physiological conditions at room temperature has been studied. Chemical analysis, Fourier transform infrared spectroscopy and X-ray diffraction have also been conducted to validate the formation of magnesium substituted brushite under physiological conditions.  相似文献   

8.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

9.
This study investigated the hydrothermal transformation of brushite (dicalcium phosphate dihydrate, DCPD, CaHPO4·2H2O) into octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4·5H2O) in seven different newly developed biomineralization media, all inspired from the commercial DMEM solutions, over the temperature range of 36.5 °C to 90 °C with aging times varying between 1 h and 6 days. DCPD powders used in this study were synthesized in our laboratory by using a wet-chemical technique. DCPD was found to transform into OCP in the Ca2+, Mg2+, Na+, K+, HCO3?, Cl? and H2PO4? containing aqueous biomineralization media in less than 72 h at 36.5 °C, without stirring. The same medium was able to convert DCPD into OCP in about 2 h at 75–80 °C, again without a need for stirring. Samples were characterized by using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).  相似文献   

10.
A series of luminescent emission-tunable phosphors Ca8NaGd(PO4)6F2: Eu2+, Mn2+ have been prepared by a combustion-assisted synthesis method. The X-ray diffraction measurement results indicate that the crystal structure of the phosphor is a single phase of Ca8NaGd(PO4)6F2. The photoluminescence (PL) properties of Eu2+ and Mn2+-codoped Ca8NaGd(PO4)6F2 phosphors were also investigated. The phosphors can be efficiently excited by ultraviolet (UV) light and show a blue emission band at about 450 nm and a yellow emission band at about 574 nm, which originated from the Eu2+ ions and the Mn2+ ions, respectively. The efficient energy transfer from the Eu2+ ions to the Mn2+ ions was observed and its mechanism should be a resonant type via a nonradiative dipole–quadrupole interaction. A color-tunable emission in Ca8NaGd(PO4)6F2 phosphors can be realized by Eu2+  Mn2+ energy transfer. Our results indicate that the developed phosphor may be used as a potential white emitting phosphor for UV based white LEDs.  相似文献   

11.
《Advanced Powder Technology》2014,25(3):1026-1030
Three kinds of Ag3PO4–AgX (X = Cl, Br and I) were prepared by the co-precipitation method between AgNO3 and Na2HPO4 + KX (X = Cl, Br and I) solutions. Their photocatalytic activities were also investigated by decolorization of a methylene blue solution. Under visible light irradiation, photocatalytic decolorization of the dye using Ag3PO4–AgX as photocatalyst could occur by interaction between a hole in the valence band of the photocatalyst and the methylene blue dye molecules as it cannot detect the emission of 7-hydroxylcoumarin. AgCl and AgBr induce the Ag3PO4 to increase its photocatalytic decolorization efficiency. On the other hand, the compound Ag3PO4–AgI also showed a high adsorption for methylene blue in the dark.  相似文献   

12.
Hydroxyapatite and Bioglass®-45S5 were sintered together creating new ceramic compositions that yielded increased apatite deposition and osteoblast differentiation and proliferation in vitro compared to hydroxyapatite. The sintered products characterized by X-ray diffraction, revealed hydroxyapatite as the main phase when small quantities (1, 2.5 and 5 wt.%) of bioglass was added. Bioglass behaved as a sintering aid with β-TCP (Ca3(PO4)2) being the minor phase. The amount of β-TCP increased with the amount of bioglass added. In compositions with larger additions of bioglass (10 and 25 wt.%), new phases with compositions of calcium phosphate silicate (Ca5(PO4)2SiO4) and sodium calcium phosphate (Na3Ca6(PO4)5) were formed respectively within amorphous silicate matrices. In vitro cell culture studies of the ceramic compositions were examined using bone marrow stromal cell (BMSC). Cell proliferation and differentiation of bone marrow stromal cells into osteoblasts were determined by Pico Green DNA assays and alkaline phosphatase (ALP) activity, respectively. All hydroxyapatite–bioglass co-sintered ceramics exhibited larger cell proliferation compared to pure hydroxyapatite samples. After 6 days in cell culture, the ceramic with Ca5(PO4)3SiO4 in a silicate matrix formed by reacting hydroxyapatite with 10 wt.% bioglass exhibited the maximum proliferation of the BMSC's. The ALP activity was found to be largest in the ceramic with Na3Ca6(PO4)5 embedded in a silicate matrix synthesized by reacting hydroxyapatite with 25 wt.% bioglass.  相似文献   

13.
RbCaGd(PO4)2 doped with Ce3+, Mn2+ was synthesized by the sol-gel method. The crystal structure and crystallographic location of Ce3+ in RbCaGd(PO4)2 were identified by Rietveld refinement. Powder X-ray diffraction (XRD) revealed that the structure of RbCaGd(PO4)2:Ce3+ compounds is hexagonal structure which is similar to that of hexagonal LnPO4 with the lattice constant of a = b = 7.005(57) Å, c = 6.352(05) Å, and V (cell volume) = 269.980 Å3. The photoluminescence behavior and emission mechanism were studied systematically by doping activators in the RbCaGd(PO4)2 host. The Mn2+ incorporated RbCaGd(PO4)2:Ce3+, Mn2+ compounds exhibited blue emission from the parity- and spin-allowed f-d transition of Ce3+ and orange-to-red emission from the forbidden 4T1  6A1 transition of Mn2+. The emission chromaticity coordinates of RbCaGd(PO4)2:0.10Ce3+, xMn2+ (x = 0.16, 0.25) are close to the white region due to an energy transfer process and the energy transfer mechanism from Ce3+ to Mn2+ in the RbCaGd(PO4)2 host was dominated by dipole-dipole interactions.  相似文献   

14.
A dense and pure hydroxyapatite [HA, Ca10(PO4)6(OH)2] coating and a fluoridated HA [Ca10(PO4)6(OH)0.67F1.33] are deposited on Ti6Al4V substrates by sol-gel dip coating method. Glucose and bovine serum albumin have been added in standard simulated body fluid (SBF) to form organic-containing SBF in simulation of the physiological blood plasma. The HA and the fluoridated HA coatings are immersed in the standard and modified SBF for time periods of 2, 4, 7, 14 and 28 days at 37 ± 0.1°C. After soaking, the coating surface is examined for nucleation and growth of apatite using SEM morphological observation. The post-soaking SBF solutions are analyzed via Inductively Coupled Plasma spectroscopy for calcium ion concentration. The results show that at concentration of 40 g/L, bovine serum albumin has significant retardation effect on apatite precipitation from SBF onto pure or fluoridated HA coatings; Fluorine-incorporation in HA has positive bio-activation effect in both standard SBF and organic-containing SBF. However, glucose addition in SBF does not generate significant influence on the bioactivity of HA and fluoridated HA.  相似文献   

15.
Double-emitting blue phosphor Sr3(PO4)2: Eu2+, Dy3+ was synthesized by solid state reaction under H2 atmosphere. XRD exhibited the pure hexagonal phase of the prepared phosphor. The photoluminescence results showed that all samples had intense broad absorption band between 250 and 450 nm, which matched well with the near-UV (350–420 nm) emission band of InGaN-based chips. The emission spectrum of Sr3(PO4)2: Eu2+, Dy3+ consisted of two broad bands, peaked at 485 nm and 410 nm, which originated from two luminescent centers, related to 4f65d1  4f7 transition of Eu2+ in six-coordinated Sr(I) and ten-coordinated Sr(II) sites respectively. The intensity ratio of two emission bands could be easily tuned by adjusting Dy3+ co-doping content, which resulted in color-tunable luminescence in bluish green region to purplish blue region.  相似文献   

16.
In this work, the availability of calcium phosphates for the light emitting layer of a thin-film electroluminescent (TFEL) device was investigated. The goal of this work was to develop an electronic device with ordinary materials such as a calcium phosphate, the principal ingredient of the skeleton of the vertebrate. Compositions of 2CaO·P2O5 (Ca2P2O7), 3CaO·P2O5 (Ca3(PO4)2) and 4CaO·P2O5 (Ca4O(PO4)2) were examined as the candidates for the light emitting layer. Before composing the TFEL device, the photoluminescence (PL) properties of the three compositions were investigated in the powder form to evaluate the performance as the light emitting layer. Among the examined calcium phosphates, Eu-doped β-Ca3(PO4)2 showed the best PL properties. It showed typical red-emission from Eu3+. The PL intensity was enhanced with the heat-treatment temperature and the optimal temperature was 1250 °C. Then, a TFEL device was prepared by a spray pyrolysis method with the β-Ca3(PO4)2:Eu3+ phosphor layer on a BaTiO3 disk. The TFEL device exhibited the red emission originating in Eu3+ at 610 nm under applying alternating voltage. Different from the power sample, the intensity of EL decreased with the heat-treatment temperature from 1000 to 1250 °C. The deterioration of EL at the higher temperatures was attributed to chemical interaction between the phosphor layer and the BaTiO3 disk.  相似文献   

17.
Calcium phosphate crystals were synthesized in polyacrylamide (PAAm) hydrogel, and the effects of the concentrations of calcium and phosphate ions on the crystalline phases and morphology were investigated. PAAm hydrogels containing diammonium hydrogen phosphate ((NH4)2HPO4) were transformed into calcified materials by diffusion of calcium ions from calcium nitrate (Ca(NO3)2) aqueous solution into the gels. Several kinds of calcium phosphate crystals were precipitated at various Ca(NO3)2 concentrations (0.5–4.0 mol·dm? 3), or (NH4)2HPO4 contents (3.6–21.6 mmol) in the gels. The crystalline phases were mainly determined by the (NH4)2HPO4 content in the gels. When the (NH4)2HPO4 content was ≥ 10.8 mmol, hydroxyapatite (HAp) formed near the interfaces between Ca(NO3)2 solution and the gels, whereas octacalcium phosphate (OCP) formed in gels with ≤ 10.8 mmol (NH4)2HPO4. HAp crystals were granular in form and about 200 nm in diameter, and OCP crystals were spherulitic with diameter 10–70 μm.  相似文献   

18.
《Materials Letters》2005,59(14-15):1902-1906
Nanocrystalline hydroxyapatite was prepared by a precipitation method with the aid of ultrasonic irradiation using Ca(NO3)2 and NH4H2PO4 as source material and carbamide (NH2CONH2) as precipitator. The influence of Ca/P molar ratio, precipitation temperature, concentration of Ca2+ ([Ca2+]) and ultrasonic power on the crystallinity of the nanopowder were systematically investigated by XRD analysis. The size of the as-prepared particles was analyzed using TEM and XRD methods. The results revealed that the monophase hydroxyapatite could be obtained at the following technological conditions: [Ca2+] = 0.01–0.1 mol/L, ultrasonic power = 300 W, Ca/P (mol) = 1.2–2.5 and T = 313–353 K. In addition, the acicular and spherical particles could be prepared at different ultrasonic powers of 300 and 200 W, respectively.  相似文献   

19.
xLiFePO4·yLi3V2(PO4)3/C composite cathode materials were synthesized via a polyol process, using LiOH·H2O, Fe3(PO4)2·8H2O, V2O5 and H3PO4 as raw materials, citric acid and PEG as carbon sources, and TEG as both a solvent and a reductant. Structural and morphological characterizations of as-prepared materials were carried out by X-ray diffraction (XRD) as well as scanning electron microscopy (SEM), respectively. Furthermore, electrochemical properties of as-prepared materials were analyzed by charge–discharge tests, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD results indicated that the composites consisting of an olivine phase of LiFePO4 and a monoclinic phase of Li3V2(PO4)3 are well-crystallized. It is found that the LF0.6P·LV0.4P/C composite exhibited better electrochemical performance than pristine LFP/C and LVP/C at 5 C and 10 C rate and delivered 126 mAh g?1 and 110 mAh g?1, respectively. The favorable particles morphology with less than 100 nm size and low extent agglomeration is believed as a factor. In addition, the co-existence of V3+-doped LiFePO4/C and Fe2+-doped Li3V2(PO4)3/C was supposed as another reason.  相似文献   

20.
Na3Gd(PO4)2, Na3Gd0.94(PO4)2:0.06Tb3+ and Na3Gd0.94(PO4)2:0.06Eu3+ are prepared by solid-state reaction and their photoluminescence (PL) properties are investigated in the ultraviolet (UV) and vacuum ultraviolet (VUV) region. The obtained results show that Na3Gd0.94(PO4)2:0.06Tb3+ has an efficient emission under 147 nm excitation, but the emission efficiency of Na3Gd0.94(PO4)2:0.06Eu3+ is low under 147 nm excitation. We discuss the energy absorption and transfer process in the VUV region to solve the special phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号