共查询到20条相似文献,搜索用时 0 毫秒
1.
针对混合蛙跳算法在优化过程中受初始值影响较大且容易陷入局部最优的缺陷,提出了一个改进的混合蛙跳算法,该算法利用基于对立学习的策略产生初始种群,提高了产生解的质量;在进化过程中,将差分进化有机地嵌入其中,维持了种群的多样性。数值结果表明,改进的混合蛙跳算法对复杂函数优化问题具有较强的求解能力。 相似文献
2.
针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled frog leaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法的更新策略中,再用改进后的混合蛙跳算法求得最优解作为KFCM算法的初始聚类中心,利用KFCM算法优化初始聚类中心,求得全局最优解,从而有效克服了KFCM算法的缺点。人造数据和经典数据集的实验结果表明,新算法与KFCM和FCM聚类算法相比,寻优能力更强,迭代次数更少,聚类效果更好。 相似文献
3.
基于改进蛙跳策略的Map-Reduce作业调度算法 总被引:1,自引:0,他引:1
为提高智能算法在Map-Reduce作业调度问题中的求解效率, 提出一种基于改进蛙跳策略的调度算法。针对蛙跳策略在Map-Reduce作业调度中的应用, 算法具体设计了编码方案和进化算子; 同时, 为提高算法收敛性能, 对蛙跳策略进行改进:结合种群多样性指标增加逆转变异操作。仿真实验结果表明, 提出的改进蛙跳策略在Map-Reduce作业调度问题求解中, 收敛性能、作业总完成时间和平均完成时间三个方面均优于基本蛙跳策略和已有的智能调度算法, 是一种实用的Map-Reduce作业调度方案。 相似文献
4.
为减小测距误差对无线传感器网络定位精度的影响,将蛙跳算法应用到距离式定位算法的位置计算阶段中,提出了蛙跳定位算法。该算法在适应度函数设计中,根据节点间的测距信息对锚节点进行了加权处理,以降低测距误差对定位结果的影响。结合最小最大法构造初始种群,使其包含更多可行解,从而提高算法效率。仿真结果表明,与采用极大似然估计法或总体最小二乘法来进行位置计算的距离式定位算法相比,该算法有效降低了距离误差对定位精度的影响,具有较高的定位精确度和稳定性,是一种实用的无线传感器网络节点定位方法。 相似文献
5.
基于改进混合蛙跳算法的移动机器人路径规划 总被引:1,自引:0,他引:1
针对混合蛙跳算法(SFLA)进行路径规划时易陷入局部最优且寻优效果较差的问题,提出一种改进的SFLA。改进算法在原算法的更新策略中引入欧氏距离和种群最优蛙,并提出一种带可调控制参数的产生新个体的方法代替原本的随机更新操作。把路径规划问题转换为最小化问题,基于环境中目标和障碍物的位置定义青蛙的适应度,机器人依次到达每次迭代中最好蛙的位置,从而实现最优路径规划。移动机器人仿真实验中,与其他算法相比,改进后的算法成功次数由82提高到98,规划时间由9.7s减少到5.3s。实验结果表明,改进算法具有较强的安全性和寻优性能。 相似文献
6.
This paper reports a new improved discrete shuffled frog leaping algorithm (ID-SFLA) and its application in multi-type sensor network optimization for the condition monitoring of a gearbox. A mathematical model is established to illustrate the sensor network optimization based on fault-sensor dependence matrix. The crossover and mutation operators of genetic algorithm (GA) are introduced into the update strategy of shuffled frog leaping algorithm (SFLA) and a new ID-SFLA is systematically developed. Numerical simulation results show that the ID-SFLA has an excellent global search ability and outstanding convergence performance. The ID-SFLA is applied to the sensor’s optimal selection for a gearbox. In comparison with GA and discrete shuffled frog leaping algorithm (D-SFLA), the proposed ID-SFLA not only poses an effective solving method with swarm intelligent algorithm, but also provides a new quick algorithm and thought for the solution of related integer NP-hard problem. 相似文献
7.
混合蛙跳算法研究综述 总被引:2,自引:0,他引:2
针对混合蛙跳算法(SFLA)是一种结合了基于遗传基因的模因演算算法和基于群体觅食行为的粒子群优化算法的亚启发式协同搜索群智能算法,系统地介绍了SFLA的基本原理和算法流程,讨论了SFLA的研究进展和应用现状,并指出了SFLA的发展趋势和下一步的研究方向. 相似文献
8.
9.
10.
聚类分析是一种无监督的模式识别方式,它是数据挖掘中的重要技术之一。给出了一种基于改进混合蛙跳算法的聚类分析方法,该方法结合了K—均值算法和改进混合蛙跳算法各自的优点,引入了K—均值操作,再用改进混合蛙跳算法进行优化,很大程度上提高了该算法的局部搜索能力和收敛速度。通过仿真对基于改进混合蛙跳的聚类方法与其他已有的聚类方法进行了比较,验证了所提出算法的优越性。 相似文献
11.
针对基本混合蛙跳算法收敛速度慢、求解精度低且易陷入局部最优的问题,提出了一种新的协同进化混合蛙跳算法。该算法在局部搜索策略中,对子群内最差个体的更新引入平均值的同时充分利用最优个体的优秀基因,可有效扩大搜索空间,增加种群的多样性;同时对子群内少量的较差青蛙采取交互学习策略向邻近子群的最优个体交流学习,增加子群间交互的频繁性,提高信息共享程度,有利于进化。在全局迭代过程中采取精英群自学习进化机制,以对精英空间进行精细搜索,获得更优解,进一步提升算法的全局寻优能力,正确导向算法的进化。实验结果表明,所提算法在七个测试函数中均能收敛到最优解0,成功率为100%,优于其他对比算法。所提算法可有效避免陷入早熟收敛,极大地提高了算法的收敛速度和优化精度。 相似文献
12.
提出云计算环境中基于改进混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)的保证QoS(Quality of Service)资源调度方案。根据任务和资源的特点提出SFLA两种编码结构及其对应更新方程;对调度方案的QoS给出定义;提出根据QoS值进行个体优劣选择的改进SFLA;在CloudSim平台对算法进行了仿真实验。实验结果证明所提出的计算方案有效。 相似文献
13.
14.
基于改进蛙跳算法的图像对比度增强方法 总被引:1,自引:0,他引:1
为改善图像对比度,提出了一种基于改进蛙跳算法的图像对比度增强新方法。该方法利用分段线性变换增强图像的原理,对蛙跳算法进行深入分析并进行改进后,将改进蛙跳算法与二维Otsu法相结合,利用蛙群的并行搜索机制自动选取图像的双阈值,然后再以图像的对比度作为改进蛙跳算法的适应度函数,自适应地搜索分段线性变换的斜率,并以之增强图像。实验结果表明,该方法有效改善原图像的对比度,且优于直方图均衡化法及基于基本蛙跳算法和人工鱼群算法的增强方法。 相似文献
15.
基于改进蛙跳算法的分布式两阶段混合流水车间调度 总被引:1,自引:0,他引:1
针对考虑顺序相关准备时间的分布式两阶段混合流水车间调度问题,提出一种改进的蛙跳算法以同时最小化拖后工件数和最大完成时间.该算法通过启发式方法和随机方法对种群进行初始化,采取基于种群和记忆的种群划分方法,同时给出模因组质量评价方法,并根据模因组质量将所有模因组划分为最优模因组、最差模因组和其他模因组,每种类型的模因组分别采取不同的搜索策略,并分配不同的搜索次数,其中最优模因组不参与种群划分.选用一种多目标经典算法和两种近5年提出的算法作为对比算法,并与改进蛙跳算法的变体进行比较以验证模因组搜索新策略的有效性.通过对大量实例的计算实验结果表明,模因组搜索新策略有效,改进蛙跳算法能有效求解分布式两阶段混合流水车间调度问题. 相似文献
16.
针对蛙跳算法局部搜索能力较弱,容易陷入早熟收敛的现象,提出了一种改进的混合蛙跳算法。新算法对子群中每只新青蛙个体引入了随机扰动,并让子群内每只青蛙个体都参与产生新个体,充分利用每只青蛙个体的信息,增加了种群的多样性,提升算法的全局寻优能力,从而避免算法陷入局部收敛。实验表明,改进的混合蛙跳算法有效避免算法陷入局部收敛,提升了算法的收敛精度。 相似文献
17.
高建兴 《网络安全技术与应用》2014,(7):28-29
混合蛙跳算法(SFLA)是一种模拟青蛙觅食行为的智能优化算法.算法具有设置参数少、简单易于理解、鲁棒性强等特点.由于该算法提出的时间不长,目前对此算法的研究成果并不多,该算法在理论和实践上还不够成熟,如该算法的鲁棒性、收敛性、稳定性等数学理论还未给出完整的数学证明,算法的适用范围目前还仅限于函数优化、组合优化、单目标优化、多目标优化等方面.本文重点分析研究了该算法的基本原理、应用前景、国内外的研究现状和主要研究内容,以及目前该算法研究过程中出现的问题. 相似文献
18.
针对SFLA算法运行速度较慢、在优化部分函数问题时精度不高和易陷入局部最优的缺点,提出了一种单种群混合蛙跳算法SPSFLA。该算法采用单个种群,无需对整个种群进行排序,每个个体通过向群体最优个体和群体中心位置学习进行更新。如果当前个体学习没有进步,则对群体最优个体进行变异,并用变异的结果替代当前个体,加快了算法的运行速度和收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。 相似文献
19.
设计了一种选择差分混合蛙跳算法SDSFLA,该算法通过增加组内个体更新个数提高了种群更新效率;通过引入差分进化算法的交叉算子和变异算子,加强了个体之间的信息交流;使用多种更新策略,提高了实验个体产生的成功率;随机选择控制参数,增加了种群的多样性。基于16个基准测试函数,将SDSFLA与一种改进的蛙跳算法、两种改进的差分进化算法进行对比,实验结果证实了SDSFLA算法的有效性和稳定性。 相似文献
20.
针对超视距多机协同空战中的火力分配(WTA)问题,建立了协同空战火力分配的数学模型,提出了采用混合蛙跳算法(SFLA)来求解协同空战火力分配问题,根据无约束化的编码方式,结合交叉、变异的遗传操作,提高了算法的收敛速度以及全局搜索能力,能有效避免陷入局部最优。仿真结果表明,所提出的混合蛙跳算法在解决协同空战火力分配问题中具有高效可行性。 相似文献