首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以NaOH和Bi(NO3)3·5H2O为原料,以庚烷、油酸和丙酮为分散剂,在室温下,制备氧化铋纳米线材料.通过扫描电子显微镜(SEM)和X射线衍射分析仪(XRD)分析产物结构和形貌,分析可知该氧化铋纳米线直径约50nm,长度几微米至几十微米之间.通过丝网印刷,制备氧化铋纳米线阵列,并进行场发射性能测试,结果表明,当电流密度0.1μA/cm2时,开启电场2.6V/μm,良好的场发射性能说明氧化铋纳米线在场发射平板显示及真空电子器件方面具有较好的应用潜力.  相似文献   

2.
Crabwise ZnO nanowires with an average length of 5 microm and an average diameter of 30 nm were selectively grown on ZnO:Ga/glass templates. Cathodoluminescence measurement indicated that the crystal quality of the crabwise ZnO nanowires was good. With an applied voltage of 120 V, the crabwise ZnO nanowire field emitters gave an emission current of 0.1 mA/cm2. Moreover, the field enhancement factor, beta, of the crabwise ZnO nanowires was approximately 980.  相似文献   

3.
采用热蒸发法成功制备氧化锡纳米线。用X射线衍射、扫描电子显微镜和透射电子显微镜对所制备纳米线的晶格结构和表面形貌进行表征。所制材料为金红石氧化锡单晶结构,纳米线直径为50~200nm,长度为5~15μm,符合气-液-固生长机制。以氧化锡为气敏材料,制备了旁热式结构气敏元件,测试该元件对浓度范围为25×10^-6 ~500×10^-6 的乙醇气体环境的敏感性能。结果表明,该元件的最佳工作温度约为260℃;在25×10^-6 和500×10^-6 的乙醇气体中,灵敏度分别为7.54和111.01,响应时间为2~20s,恢复时间为5~33s;在测试范围内灵敏度与气体浓度具有良好的线性关系;7天内重复测量误差在5%以内,稳定性较好。  相似文献   

4.
《Materials Letters》2006,60(25-26):3109-3112
This article reports the synthesis and field emission of patterned SnO2 nanoflowers obtained by a simple method. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO2 nanoflowers arrays, with a unit diameter of ∼ 50 μm, were synthesized via vapor phase transport method. Field emission scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to identify the surface morphology and composition of the as-synthesized SnO2 nanostructures. The mechanism of formation of SnO2 nanostructures was also discussed. The measurement of field emission (FE) showed that the as-synthesized SnO2 nanostructure arrays have a lower turn-on field of 2.6 V/μm at the current density of 0.1 μA/cm2. This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays and sensor arrays.  相似文献   

5.
Ag(TCNQ)纳米线的制备和场发射性能研究   总被引:1,自引:0,他引:1  
采用气-液-固反应方法在硅片上制备了取向金属有机配合物Ag(TCNQ)纳米线.样品的XRD特征峰与Ag(TCNQ)相对应;SEM形貌显示纳米线几乎垂直基片生长,直径在50~300nm,长度在2~50μm.初步对其场发射性能进行了研究,所得Ag(TCNQ)纳米线的最低场发射开启电压约为1.5Vμm-1,最大发射电流密度约为0.03mAcm-2,此时对应的电场约为2.5Vpm-1.由测量所得I-Ⅴ曲线得到的FoWler-Nordheim(F-N)曲线近似为一条直线,说明样品具有场发射性能.重复实验表明,Ag(TCNQ)纳米线的场发射具有一定的稳定性.结合纳米线制备工艺,初步分析了场发射性能的影响因素.  相似文献   

6.
Single-crystalline Zn2SnO4 nanowires were successfully synthesized on a photoresist-coated Si substrate using a facile chemical vapor deposition method. The growth of the nanowires followed a self-catalytic vapor-liquid-solid process. During annealing, the photoresist was carbonized into a complex glassy and graphite carbon structure. The immiscibility between the carbon layer and the in-situ formed Zn2SnO4 was a prime factor in the formation of the one-dimensional Zn2SnO4 nanowires. A broad blue-red emission band centered at 490.4 nm was observed in the photoluminescence spectrum of these nanowires, and it was related to the oxygen vacancies in these nanowires.  相似文献   

7.
于灵敏  朱长纯  商世广  潘金艳 《功能材料》2007,38(10):1569-1571
利用物理热蒸发法制备大规模的蒲公英状的ZnO纳米锥,利用荧光光谱仪对ZnO纳米锥进行了光致发光性能测试.针对现有的丝网印刷碳纳米管(CNTs)薄膜需要各种后处理工艺后才能改善其场发射特性的问题,提出了一种不需任何后处理丝网印刷ZnO纳米锥的浆料配制工艺.用该工艺制备的丝网印刷ZnO纳米锥的场发射特性测试表明,ZnO纳米锥与制浆剂质量比为3∶5的薄膜的开启场强最低为2.25V/μm(电流密度为1μA/cm2),在4.6V/μm场强下,阳极荧光粉的发光点亮度高且分布均匀.说明该方法成本低,工艺简单,无需任何后处理,在ZnO纳米锥场发射显示器的制作中有很好的实际应用价值.  相似文献   

8.
We report a study of the role of mid-gap defect levels due to surface states in SnO(2) nanowires on carrier trapping. Ultrafast pump-probe spectroscopy provides carrier relaxation time constants that reveal the nature and positions of various defect levels due to the surface states which in turn provide details on how the carriers relax after their injection. The effect of oxygen annealing on carrier concentration is also studied through XPS valence band photoemission spectroscopy, a sensitive non-contact surface characterization technique. These measurements show that charge transfer associated with chemisorption of oxygen in different forms produces an upward band bending and leads to an increase in the depletion layer width by approximately 70 nm, thereby decreasing surface conductivity and forming the basis for the molecular sensing capability of the nanowires.  相似文献   

9.
使用水平石英管式电炉,以二氧化锡和石墨的混合物为原材料、高纯氮气为载气,在850℃温度下用直接热蒸发法制备二氧化锡纳米线.衬底硅片的直径为10mm,其上覆盖一层5nm厚的金催化剂.原材料放在石英舟中,离原材料30mm的下风口处放置硅衬底,原材料和硅衬底都放置在石英管的中部电炉的恒温区内.用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察到二氧化锡的纳米线结构;X射线衍射(XRD)表明二氧化锡纳米线具有四方金红石结构;选区电子衍射(SAED)照片表明二氧化锡纳米线具有完善的晶体结构.不同生长时间下制备样品的扫描电子显微镜和透射电子显微镜照片再现了二氧化锡纳米线的生长过程,该纳米线的生长符合传统的VLS生长机制.  相似文献   

10.
High-density single-crystalline Zn2SnO4 nanowires have been successfully synthesized by using a simple thermal evaporation method by heating a mixture of ZnO and SnO2 nano powders. The products in general contain various geometries of wires, with an average diameter of 80-100 nm. These nanowires are ultra-long, up to 100 microns. The transmission electron microscopy study showed that these nanowires exhibited zigzag twinned geometry, and grow along the (111) direction. Low-temperature photoluminescence properties of the nanowires were measured, showing a strong green emission band at about 515 nm and a weak peak corresponding to UV emission at about 378 nm, which have not been reported before.  相似文献   

11.
12.
Pang C  Yan B  Liao L  Liu B  Zheng Z  Wu T  Sun H  Yu T 《Nanotechnology》2010,21(46):465706
Ternary oxides have the potential to display better electrical and optical properties than the commonly fabricated binary oxides. In our experiments, Zn(2)SnO(4) (ZTO) nanowires were synthesized via thermal evaporation and vapor phase transport. The opto-electrical performance of the nanowires was investigated. An individual ZTO nanowire field-effect transistor was successfully fabricated for the first time and shows an on-off ratio of 10(4) and transconductance of 20.6 nS, which demonstrates the promising electronic performance of ZTO nanowire in an electrical device. Field emission experiments on ZTO nanowire film also indicate their potential application as a field emission electron source.  相似文献   

13.
The field emission of In-doped SnO2 wire array has been performed in parallel plate diode configuration. A maximum current density of 60?µA/cm2 is drawn from the emitter at an applied field of 4?V/µm. The nonlinearity in the Fowler–Nordheim plot, characteristics of semiconductor emitter has been observed and explained on the basis of electron emission from both the conduction and the valence bands. The current stability recorded at a preset value of 1?µA is observed to be good. The high emission current density, good current stability and mechanically robust nature of the wires offer unprecedented advantages as promising cold cathodes for many potential applications based on field emission.  相似文献   

14.
15.
16.
Hematite (alpha-Fe2O3) nanowires were synthesized by the thermal oxidation of Fe-Ni alloy grids at 900 degrees C. The effects of hydrogen (H2) plasmas on the morphology and field emission properties of hematite (alpha-Fe2O3) nanowires were investigated. Many nanocrystallites with sharp tips were found to be produced on the surface of the originally smooth nanowires after H2 plasmas treatment. Field emission measurements demonstrated that the treated alpha-Fe2O3 nanowires possessed much better performance with turn-on field of approximately 3.7 V/microm at 0.1 microA/cm2 of current density, compared with the as-grown samples.  相似文献   

17.
Bi2O3-core/SnO2-shell nanowires have been prepared by using a two-step process: thermal evaporation of Bi2O3 powders and sputtering of SnO2. The crystalline nature of the Bi2O3-core/SnO2-shell nanowires has been revealed by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). TEM analysis and X-ray diffraction (XRD) results indicate that the Bi2O3-core/SnO2-shell nanowires consist of pure tetragonal alpha-Bi2O3-phase momocrystalline cores and tetragonal SnO2-phase polycrystalline shells. The photoluminescence (PL) measurements show that Bi2O3 nanowires have a broad emission band centered at around 560 nm in the yellow-green region. On the other hand, the Bi2O3-core/SnO2-shell coaxial nanowires with the sputtering times of 4 and 8 min have a blue emission band centered at around 450 nm. In contrast, those with a sputtering time of 10 min have a broad emission band centered at approximately 550 nm again. The origin of this yellow-green emission from the core/shell nanowires, however, quite differs from that from Bi2O3 nanowires, i.e., it is not from the Bi2O3 cores but from the SnO2 shells.  相似文献   

18.
《Materials Letters》2005,59(19-20):2465-2467
The zinc oxide (ZnO) nanowires with different morphology and diameter were synthesized on silicon (100) substrates by heating pure zinc powder at low temperatures of 450 °C and 480 °C. Scanning electron microscopy (SEM) was used to analyze the morphology and diameter of samples. The electron field emission properties between different morphology of ZnO nanowires samples were compared. A low turn-on field at 3.6 V/μm was observed from nanorods due to better alignment, and a strong emission current density of 3.6 mA/cm2 at electronic field 9.0V/μm was obtained from needle-like nanowires sample. The emission stability of ZnO samples is also presented.  相似文献   

19.
Porous silicon (PS)-core/SnO2-shell nanowires (NWs) were synthesized by a two step process: electrochemical anodization of silicon followed by atomic layer deposition of SnO2. The photoluminescence spectrum of the PS nanowires showed a broad blue green emission band centered at approximately 510 nm. PL measurement also showed that the blue green emission was enhanced by SnO2 coating and enhanced further by thermal annealing. It appeared that annealing in a reducing atmosphere was more efficient in increasing the blue green emission intensity than annealing in an oxidizing atmosphere. Energy-dispersive X-ray spectroscopy revealed that the enhancement in the blue green emission by annealing in a reducing atmosphere was attributed to the formation of Sn interstitials in the PS cores due to the dissociation of the SnO2 shells followed by the diffusion of the Sn atoms, generated as a result of the dissociation of SnO2, into the PS cores during the annealing process.  相似文献   

20.
Ryu Y  Tak Y  Yong K 《Nanotechnology》2005,16(7):S370-S374
A simple, direct synthesis method was used to grow core-shell SiC-SiO(2) nanowires by heating NiO-catalysed silicon substrates. A carbothermal reduction of WO(3) provided a reductive environment and carbon source to synthesize crystalline SiC nanowires covered with SiO(2) sheaths at the growth temperature of 1000-1100?°C. Transmission electron microscopy showed that the SiC core was 15-25?nm in diameter and the SiO(2) shell layer was an average of 20?nm in thickness. The thickness of the SiO(2) shell layer could be controlled using hydrofluoric acid (HF) etching. Field emission results of core-shell SiC-SiO(2) and bare SiC nanowires showed that the SiC nanowires coated with an optimum SiO(2) thickness (10?nm) have a higher field emission current than the bare SiC nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号