首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Research Bulletin》2003,38(11-12):1601-1605
A simple co-precipitation technique had been successfully applied for the preparation of pure ultrafine single phase SrBi2Ta2O9. Ammonium hydroxide was used to precipitate Sr2+, Bi3+ and Ta5+ cations simultaneously. No pyrochlore phase was found while heating powder at 800 °C and pure SrBi2Ta2O9 phase was found to be formed by X-ray diffraction. Particle size and morphology was studied by scanning electron spectroscopy. Ferroelectric hysteresis loop parameters of these samples were also studied.  相似文献   

2.
《Materials Letters》2004,58(7-8):1302-1306
In this study, TiO2 is used to substitute the Bi2O3 and Ta2O5 sites of the SrBi2Ta2O9 ceramics to form Sr(Bi2Ta2)0.95Ti0.2O9 composition. From the X-ray patterns, the 2θ values shift to higher values as the sintering temperatures increase. At lower sintering temperatures of 1200–1250 °C, the Sr(Bi2Ta2)0.95Ti0.2O9 ceramics reveal a two-phase structure, bar-typed grains and disk-typed grains coexist; when 1300 °C is used as the sintering temperature, only the bar-typed grains are revealed. The sintering temperatures also have large influences on the maximum dielectric constants and the Curie temperatures of Sr(Bi2Ta2)0.95Ti0.2O9 ceramics.  相似文献   

3.
《Materials Research Bulletin》2013,48(4):1553-1559
In recent years mechanical activation technique has been utilized to synthesize the nanocrystalline form of compounds resulting in enhancement in the properties. Also, microwave sintering is being preferred over conventional sintering due to rapid processing and uniform temperature distribution throughout the specimen. In the present work, nanocrystalline non-stoichiometric strontium bismuth tantalate (SBT) of the composition Sr0.8Bi2.2Ta2O9 ferroelectric ceramics were synthesized by microwave sintering process (with sintering temperatures of 1000 °C and 1100 °C) and conventional solid state reaction process (with sintering temperature of 1100 °C) with an objective of comparing the properties of the synthesized specimens by the two processes. X-ray diffraction analysis shows the formation of single phase layered perovskite structure formation by both the processes. Scanning electron microscopy reveals the formation of a finer granular microstructure in the specimen synthesized by microwave sintering compared to that in the specimen prepared by conventional sintering. The specimen prepared by microwave sintering process exhibits improved electrical properties with higher dielectric constant, higher piezoelectric and pyroelectric coefficients and lower dielectric loss.  相似文献   

4.
《Materials Research Bulletin》2004,39(4-5):629-636
The microstructures and the microwave dielectric properties of barium magnesium tantalate ceramics prepared by conventional mixed oxide route have been investigated. The prepared Ba(Mg1/3Ta2/3)O3 exhibited a mixture of cubic perovskite and a hexagonal superstructure with Mg and Ta showing 1:2 order in the B-site. It is found that low level doping of V2O5 (up to 0.5 wt.%) can significantly improve densification of the specimens and their microwave dielectric properties. The density of doped Ba(Mg1/3Ta2/3)O3 ceramics can be increased beyond 95% of its theoretical value by 1500 °C-sintering, which is caused by the liquid-phase effect of V2O5 addition. The detected second phase Ta2O5 was mainly the result of V5+ substitution in the ceramics. Dielectric constant (εr) and temperature coefficient of resonant frequency (τf) were not significantly affected, while the unloaded quality factors Q were effectively promoted by V2O5 addition due to the increase in B-site ordering. The εr value of 24.1, Q×f value of 149,000 (at 10 GHz) and τf value of 7.2 ppm/°C were obtained for Ba(Mg1/3Ta2/3)O3 ceramics with 0.25 wt.% V2O5 addition sintered at 1500 °C for 3 h.  相似文献   

5.
《Materials Research Bulletin》2006,41(6):1127-1132
Microwave dielectric ceramics of tungsten–bronze-type BaSm2Ti4O12 were prepared by doping CuO (up to 2 wt.%) as the liquid-phase sintering aid. The effects of CuO additive on the densification, micro structure and dielectric properties were investigated. Due to the liquid-phase effect, the sintering temperature of BaSm2Ti4O12 ceramics with 1 wt.% CuO addition can be effectively reduced to 1160 °C, about 200 °C lower than that of pure BaSm2Ti4O12 ceramics, while good microwave dielectric properties of ɛr = 75.8, Q*f = 4914.6 GHz and τf = −7.65 ppm/°C were still achieved.  相似文献   

6.
《Materials Letters》2006,60(9-10):1188-1191
The effects of Bi2O3–V2O5 additive on the microstructures, the phase formation and the microwave dielectric properties of MgTiO3 Ceramics were investigated. The Bi2O3–V2O5 addition lowered the sintering temperature of MgTiO3 ceramics effectively from 1400 to 875 °C due to the liquid-phase effect. The microwave dielectric properties were found to strongly correlate with the amount of Bi2O3–V2O5 addition. The saturated dielectric constant decreased and the maximum Qf values increased with the increasing V2O5 content, which is attributed to the variation of the second phase including Bi2Ti2O7, Bi4V1.5Ti0.5O10.85 and BiVO4. At 875 °C, MgTiO3 ceramics with 5.0 mol% Bi2O3–7 mol% V2O5 gave excellent microwave dielectric properties: εr = 20.6,Qf = 10420 GHz (6.3 GHz).  相似文献   

7.
Nanoparticles of bismuth layered Aurivillius phase, Bi2W2O9, have been synthesized by annealing of precursor prepared by high energy milling in ball mill. The obtained powders have been investigated using the XRD, TEM, SEM, diffuse reflectivity, Raman and infrared spectroscopy. The results show that mechanochemical activation allows obtaining Bi2W2O9 at much lower temperatures than those required in a conventional solid state reaction or synthesis through a complex organic precursor. As a result, material with smaller grain size can be obtained. Therefore this synthesis method is the best route to enhance photocatalytic activity of Bi2W2O9. Our results also show that milling time has great impact on the crystallization mechanism. Bi2W2O9 crystallizes easily already at 600 °C from precursor milled by 8 h. However, prolong milling time results in stabilization of an unknown phase or phases, which crystallize below 700 °C, and transform into the well-known Bi2W2O9 phase after annealing at 750 °C.  相似文献   

8.
Microstructural and physical properties of W–1 wt.% Ni matrix composites reinforced with Y2O3 and TiB2 particles produced via mechanical alloying and sintering at 1400 °C for 1 h under Ar, H2 gas flowing conditions were investigated. XRD patterns of the sintered samples revealed the presence of W, Ni and TiB2 phases, whereas W2B and NiTi phases were detected in the samples containing 4 wt.% and 5 wt.% TiB2. Relative density value of W–1 wt.% Ni sample was measured as 97%, which decreased to 95.4% with the addition of 0.5 wt.% Y2O3. Relative density values varied between 95.4% and 97.3% for the sintered samples containing varying TiB2 between 1 wt.% and 5 wt.%. Average W grain size in the sintered samples decreased with the addition of Y2O3 and TiB2 particles, from 5.38 μm in the W–1 wt.% Ni sample to 0.8 μm in the W–1 wt.% Ni sample containing 0.5 wt.% Y2O3 and 5 wt.% TiB2 particles. Vickers microhardness values varied between 4.53 GPa and 8.54 GPa. The sample with the composition of W–1 wt.% Ni/0.5 wt.% Y2O3 and 5 wt.% TiB2 had a relative density value of about 95.7% and hardness value of 8.54 GPa after sintering at 1400 °C for 1 h.  相似文献   

9.
Gd2O3 (0–0.8 wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd2O3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd2O3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd2O3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd2O3, and the BNKT18 ceramics doped with 0.4 wt.% Gd2O3 have the highest piezoelectric constant (d33 = 137 pC/N), highest relative dielectric constant (εr = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd2O3 have the highest planar coupling factor (kp = 0.2463).  相似文献   

10.
《Materials Research Bulletin》2006,41(6):1178-1184
The relationship between the sintering temperature and the microwave dielectric properties of Mg4(TaNb1−xVx)O9 (MTNV) compounds were investigated in this study in order to reduce the sintering temperature of the compound. A small amount of V2O5 doping lowered the sintering temperature of the MTNV compounds. The variations in the dielectric constant and the quality factor of the MTNV compounds depended on the amount of V2O5 doping and the sintering temperature; a small amount of V2O5 doping was effective in allowing low sintering temperatures without a detrimental effect on these dielectric properties. As a result, a dielectric constant of approximately 12 and a quality factor of approximately 200,000 GHz were obtained when the MTNV compounds with x = 0.2 was sintered at 1200 °C. The temperature coefficient of resonant frequency of the MTNV compound with x = 0.025 slightly changed from −63 to −73 ppm/ °C with an increased sintering temperature because of the presence of a secondary phase.  相似文献   

11.
The solid solutions of Ba-doped SrBi2Ta2O9 layered perovskite ceramic powders have been successfully prepared via a two-step process using BiTaO4 as a precursor. The lattice constants of the solid solutions monotonically increase with increasing barium-ion content. The sinterability of (Sr1–xBax)Bi2Ta2O9 powders is significantly improved by increasing the barium-ion content. When the specimens with high barium-ion contents are sintered at 1100°C, they thermally decompose to form rod-like grains and the matrix expands, leading to a lower density. The addition of barium ions to SrBi2Ta2O9 also results in significant variation in the morphology of the sintered specimens and the occurrence of c-axis preferred orientation which is ascribed to the anisotropic growth of plate-like grains. The precise control of the barium-ion content as well as the sintering conditions is critical for obtaining densified barium-ion doped SrBi2Ta2O9 ceramics with a pure, layered perovskite structure.  相似文献   

12.
《Materials Letters》2005,59(19-20):2433-2436
The lithium solubility limit, photoluminescence (PL) and photoluminescence excitation (PLE) properties of lithium ion co-activated ZnGa2O4:Bi3+,Li+ phosphor have been investigated. A LiGaO2 second phase began to appear from 3 mol% Li+ ion co-activated ZnGa2O4:Bi3+,Li+ phosphor. The enhanced brightness of blue (λex = 254 nm) and white (λex = 315 nm) colors of bismuth ions doped ZnGa2O4:Bi3+,Li+ phosphor was assigned to the formation of LiGaO2. Bi3+ activated lithium zinc gallate phosphor showed a more enhanced PLE peak around 315 nm than that of lithium zinc gallate phosphor when λem = 520 nm. Thus, we observed that the PL intensity of ZnGa2O4:Bi3+,Li+ phosphor with λem = 520 nm was much greater than that of ZnGa2O4:Li+ phosphor. Also, ZnGa2O4:Bi3+,Li+ phosphor exhibited a shorter decay time than that of ZnGa2O4:Li+ phosphor by about a factor of about 2.  相似文献   

13.
《Materials Letters》2006,60(25-26):3183-3187
This paper studied the annealing effects on the dielectric characteristics of vanadium doped SrBi2Ta2O9 (SBT). SBT was synthesized at 1000 °C and vanadium doped SBT at 900 °C by solid-state reaction. Crystallization structure and phase purity of the prepared ceramic samples was observed by X-ray diffraction analysis. XRD analysis indicated a single layered perovskite structure without any secondary phases up to 15% of vanadium doping in SBT ceramics. Detailed dielectric study on vanadium doped SBT ceramics indicated that post-sinter annealing enhances the peak dielectric permittivity, which is attributed to the increased homogeneity in the system at atomic scale upon annealing. Annealing for larger time interval suppresses the permittivity growth beyond transition temperature which gives a direct evidence for the existence of lower valance state of vanadium (V+4) in as-sintered SBTV ceramics and also the permittivity growth is related to the oxygen ions or oxygen vacancies created during sintering. UV–Vis spectroscopy was also performed to confirm the lower valance state of the vanadium ions in the ceramics.  相似文献   

14.
Er2O3 (0–0.8 wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state reaction method. The effects of Er2O3 on the microstructure and electrical properties were investigated. X-ray diffraction (XRD) data shows that Er2O3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of the BNKT18 ceramics and form the pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain sizes of BNKT18 ceramics decrease with the increase of Er2O3 content; in addition, the modified ceramics have the clear grain boundary and a uniformly distributed grain size. At room temperature, the electrical properties of the BNKT18 ceramics have been improved with the addition of Er2O3, and the BNKT18 ceramics doped with 0.6 wt.% Er2O3 have the highest piezoelectric constant (d33 = 138 pC/N), the highest planar coupling factor (kp = 0.2382), the highest remnant polarization (Pr = 25.2 μC/cm2), the higher relative dielectric constant (εr = 936) and lower dissipation factor (tanδ = 0.047) at a frequency of 10 kHz. Moreover, the Tm and Td of the samples increase with the addition of Er2O3.  相似文献   

15.
《Materials Research Bulletin》2006,41(8):1447-1454
The ceramics were prepared successfully by Pb3O4 and WO3 additions to 0.90Pb(Zr,Ti)O3–0.03Pb(Fe2/3W1/3)O3–0.07Pb(Mn1/3Nb2/3)O3 (0.90PZT–0.03PFW–0.07PMN). Effects of the additions on the structure, bulk density and electrical properties of ceramics were investigated. The results revealed that the proper additions of WO3 with 2.0 wt.% Pb3O4 excess could form liquid phase that promoted the densification of the ceramics. The fracture mode changed from transgranular to intergranular as increasing WO3 with 2.0 wt.% Pb3O4 excess. The piezoelectric and dielectric properties were also promoted by excess of Pb3O4 and WO3 additions. The optimized electrical properties were obtained at excess of 2.0 wt.% Pb3O4 and 0.15 wt.% WO3. The parameters were as follows: d33 = 351 pC/N, Kp = 0.64, Qm = 1882, ɛr = 1798, tan δ = 0.0052, Pr = 19.94 μC/cm2 and Ec = 11.98 kV/cm, which shows high Kp, Qm, d33 and low tan δ can be obtained simultaneously by adding WO3 addition to Pb3O4 modified PZT–PFW–PMN system.  相似文献   

16.
《Materials Research Bulletin》2006,41(7):1385-1391
CaTi1−x(Fe0.5Nb0.5)xO3 (0  x  1) dielectrics were synthesized via the solid state reaction route and structure analysis was performed together with the dielectric characterization. The substitution of Ti4+ by Fe3+/Nb5+ and developed phase were studied by X-ray diffraction. The dielectric constant and temperature coefficient of resonant frequency decrease rapidly with an increase of x. The influence of 1–5 wt.% B2O3 as a sintering additive investigated at CaTi0.5(Fe0.5Nb0.5)0.5O3 solid solutions. The dielectric properties were found to strongly depend on the sintering conditions and contents of B2O3 additions. ɛr = 52.3, Q × fo = 2930 GHz and Tf = 13 ppm/°C were obtained for CaTi0.5(Fe0.5Nb0.5)0.5O3 specimen 3 wt.% B2O3 sintered at 900 °C for 2 h.  相似文献   

17.
A new low loss microwave dielectric ceramic with composition of CoLi2/3Ti4/3O4 was prepared by a conventional solid-state reaction method. The compound has a cubic spinel structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.3939 Å, V = 591.42 Å3, Z = 8 and ρ = 4.30 g/cm3. This ceramic has a low sintering temperature (~1050 °C) and good microwave dielectric properties with relative permittivity of 21.4, Q × f value of 35,000 GHz and τf value of ?22 ppm/°C. Furthermore, the addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1050 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added CoLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.  相似文献   

18.
《Materials Research Bulletin》2013,48(4):1420-1427
Hierarchical β-Bi2O3/Bi2MoO6 heterostructured flower-like microspheres assembled from nanoplates with different β-Bi2O3 loadings (0–26.5 mol%) were synthesized through a one-step template-free solvothermal route. Under visible-light illumination (λ > 420 nm), over 99% of rhodamine B was degraded within 90 min on the 21.9 mol% of β-Bi2O3 loading Bi2O3/Bi2MoO6 microspheres. The remarkable enhancement of photocatalytic activity of the hierarchical Bi2O3/Bi2MoO6 micro/nanostructures can be attributed to the effective separation of the photoinduced charge carriers at the interfaces and in the semiconductors. The electrons (e) are the main active species in aqueous solution under visible-light irradiation. The Bi2O3/Bi2MoO6 also displays visible-light photocatalytic activity for the destruction of E. coli. In addition, the β-Bi2O3 in the hierarchical Bi2O3/Bi2MoO6 microspheres is very stable and the composite can be easily recycled by a simple filtration step, thus the second pollution can be effectively avoided. A possible photocatalytic mechanism was proposed based on the experimental results.  相似文献   

19.
Natural-superlattice-structured ferroelectric thin films, Bi3TiNbO9–Bi4Ti3O12 (BTN–BIT), have been synthesized on Pt/Ti/SiO2/Si by metal organic decomposition (MOD) using BTN–BIT (1 mol:1 mol) solution. BTN–BIT films show natural-superlattice peaks below 2θ = 20° in X-ray diffraction patterns, which indicate that the BTN–BIT films annealed at 700–800 °C in O2 ambient are consisted of iteration of two unit cells of Bi3TiNbO9 and one unit cell of Bi4Ti3O12. As the annealing temperature increases from 600 to 750 °C, uniform and crack-free films, better crystallinity and ferroelectric properties can be obtained, but the pyrochlore phase in BTN–BIT films annealed over 800 °C would impair the ferroelectric properties. With the increase of O2 flow rate from 0.5 to 1.5 L/min, both remanent polarization Pr and coercive electric field EC increase, which are mainly attributed to reduction of the vacanvies of Bi and oxide ions in the films. Natural-superlattice-structured BTN–BIT thin films having 2–1 superlattice annealed at 750 °C in O2 ambient with a flow rate of 1.5 L/min exhibit superior ferroelectric properties of Pr = 23.5 μC/cm2 and EC = 135 kV/cm.  相似文献   

20.
《Materials Research Bulletin》2006,41(10):1972-1978
The effect of V2O5 addition on the microwave dielectric properties and the microstructures of 0.4SrTiO3–0.6La(Mg0.5Ti0.5)O3 ceramics sintered for 5 h at different sintering temperature were investigated systematically. It was found that the sintering temperature was effectively lowered about 200 °C by increasing V2O5 addition content. The grain sizes, bulk density as well as microwave dielectric properties were greatly dependent on sintering temperature and V2O5 content. The 4ST–6LMT ceramics with 0.25% V2O5 sintered at 1400 °C for 5 h in air exhibited optimum microwave dielectric properties of ɛr = 50.7, Q × f = 15049.6 GHz, Tf = −1.7 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号