首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To meet the ever-increasing construction demands around the world during recent years,reinforcement and stabilization methods have been widely used by geotechnical engineers to improve the performances and behavior of fine-grained soils.Although lime stabilization increases the compressive strength of soils,it reduces the soil ductility at the same time.Recent research shows that random fiber inclusion modifies the brittleness of soils.In the current research,the effects of lime and polypropylene(PP) fiber additions on such characteristics as compressive and shear strengths,failure strain,secant modulus of elasticity(E_(50)) and shear strength parameters of mixtures were investigated.Kaolinite was treated with 1%,3% and 5% lime by dry weight of soil and reinforced with 0.1% monovalent PP fibers with the length of 6 mm.Samples were prepared at optimum conditions and cured at 35℃ for 1 d,7 d and28 d at 90% relative humidity and subsequently subjected to uniaxial and triaxial compression tests(UCT and TCT) under cell pressures of 25 kPa,50 kPa and 100 kPa.Results showed that inclusion of random PP fibers to clay-lime mixtures increases both compressive and shear strengths as well as the ductility.Lime content and curing period were found to be the most influential factors.Scanning electron microscopy(SEM) analysis showed that lime addition and the formation of cementitious compounds bind soil particles and increase soil/fiber interactions at interface,leading to enhanced shear strength.The more ductile the stabilized and reinforced composition,the less the cracks in roads and waste landfill covers.  相似文献   

2.
《Soils and Foundations》2007,47(3):577-596
The effects of long-term curing on the strength and deformation characteristics of compacted cement-mixed soil were evaluated. A series of unconfined compression tests and drained triaxial compression (TC) tests were performed on moist cement-mixed sand compacted at various water contents, wi, and cured at unconfined conditions for different periods up to more than eight years. TC tests were performed on cement-mixed gravel compacted at the optimum water content. The ageing effects on the compressive strength, qmax, from the present study were compared to those with various types of cement-mixed soils and concretes from the literature. An increase in qmax of cement-mixed soil continues for a very long period, up to several years, unlike ordinary concrete. This result indicates that the compressive strength at 28 days of cement-mixed soil, usually employed as the design strength, may largely underestimate the long-term strength. The increasing rate with time of the initial stiffness at small strains becomes continuously smaller than qmax with time. A large high-stiffness stress zone develops when monotonic loading is restarted at a certain high strain rate after some long sustained loading. This stress size is much larger than the one in the case without ageing effects. By positive interactions between the ageing effect and the inviscid yielding, qmax exhibits a larger extra gain when cured longer at more anisotropic stress states.  相似文献   

3.
This study aims to develop a dosage methodology based on tensile and compressive strength for artificially cemented fibre reinforced soils considering filament length. The controlling parameters evaluated were the fibre length (l), the cement content (C), the porosity (η) and the porosity/cement ratio (η/Civ). A number of unconfined compression and split tensile tests were carried out in the present work. The results show that fibre insertion in the cemented soil, for the whole range of cement content studied, and the increase of reinforcement length improve unconfined compressive and split tensile strengths. It was shown that the porosity/cement ratio, in which volumetric cementitious material content is adjusted by an exponent (0.28 for all the fibre-reinforced and non-reinforced cemented soil mixtures) to end in unique correlations for each mixture, is a good parameter in the evaluation of the unconfined compressive and split tensile strength of the fibre-reinforced and non-reinforced cemented soil studied. Analysis of variance (ANOVA) performed on the results of a factorial experiment considering the effect of adjusted cement content, fibre length and porosity showed that all of these factors are significant in affecting the measured changes in split tensile and unconfined compressive strength values. Finally, unique dosage relationships could be achieved linking the unconfined compressive strength (qu) and the split tensile strength (qt) of the sandy soil studied with porosity/cement ratio (η/Civ) and fibre length (l).  相似文献   

4.
《Soils and Foundations》2001,41(1):83-96
Two soils with low plasticity are investigated; intermediate soil from Ishinomaki, Japan and lean clay from Dram- men, Norway. Since both the soils were retrieved using the Japanese sampling method, the test results from these samples are comparable. Though they have the same order of plasticity index (Ip), there is a significant difference in the grain size distribution characteristics between these soils. Ishinomaki intermediate soil contains a lot of sand or silt sized particles, its Ip value being nearly proportional to its clay content. On the other hand, Drammen clay consists of a large proportion of rock flour, which contains little clay mineral. The study shows that the unconfined compression test significantly underestimates the undrained shear strength for both soils, and their residual effective stress (p'r) is also very low. It has been found that to compensate for loss of p'r, recompression tests are useful methods to evaluate the strength of such soils.  相似文献   

5.
团聚体大小对填筑土强度影响的试验研究   总被引:9,自引:1,他引:9       下载免费PDF全文
为了了解团聚体大小对填筑土强度的影响,对不同改性填筑土的12组土样进行了一系列的无侧限抗压和剪切试验。结果表明:当团聚体的平均粒径小于3.5mm时,素土、纤维土和石灰土的粘聚力随粒径的增大而减小,内摩擦角随粒径的增大而增大;当团聚体的平均粒径大于3.5mm时,随粒径的增大,素土和石灰土的粘聚力明显增大且内摩擦角明显减小,纤维土的粘聚力和内摩擦角则变化不大;在受压破坏时,素土表现为应变软化的塑性破坏,纤维土表现为应变硬化的塑性破坏,石灰土则表现为完全的脆性破坏;素土、纤维土和石灰土的无侧限抗压强度随团聚体粒径的增大而降低。在试验结果的基础上,对团聚体大小的影响机理进行了分析和讨论。试验结论对进一步认识和掌握填筑土的工程性质具有重要意义。  相似文献   

6.
This paper describes a series of stress-controlled uniaxial compressive tests performed on frozen loess and triaxial compressive tests performed on frozen/unfrozen loess, which experienced K0 consolidated process before freezing, to study the stress–strain–strength behaviour of an artificially frozen soil in deep alluvium. The aim of subjecting the triaxial test samples to K0 consolidation was to simulate the forming process of deep soils. These tests examined the influence of the initial confining pressure and the temperature of frozen soils on stress–strain–strength behaviour. An analysis of the mechanical behaviour of artificially frozen soil is performed from interpretation of results from the unconfined and triaxial compressive tests of frozen/unfrozen soils, in which the influence of both the degree of cementation arising from the interparticle bonding and the initial confining stress was investigated. For deep artificially frozen soils, it was concluded that the unconfined compressive strength is a direct measurement of the degree of cementation. Consequently, the triaxial compressive strength can be expressed as a function of only two variables: (1) the internal angle of the shearing resistance of the unfrozen soils; and (2) the unconfined compressive strength. Data from additional experiments performed later verified the validity of proposed relationship in evaluating the strength of deep artificially frozen soil.  相似文献   

7.
《Soils and Foundations》2007,47(5):911-918
This paper describes the tensile strength measured for three kinds of statically compacted unsaturated soils; mixtures of clay ~ silt ~ sand, Narita-sand and Kanto loam. Specimens were directly prepared either under controlled compaction stress or under controlled dry density by statically compacting them within the tensile mold of the apparatus. Image analysis was done to show the normality of tensile force to the tensile failure plane. Tensile strengths (qt) were compared with the unconfined compressive strengths (qu) for silt ~ sand mixture, clay ~ sand mixture, clay ~ silt mixture and Narita sand, respectively. Increment in tensile strength (also qu/qt ratio) with the increase in the percentage and decrease in the size of finer soils could be seen. Effects of number of compaction layers and tensile pulling rates on the qt were also examined. Increase in the tensile strength with the increase in the number of compaction layers was observed; and it was suggested to prepare the unsaturated compacted specimen by 3 to 4 layers compaction. Increase in tensile strength of 0.3 kPa and 0.003 kPa per one cycle of logarithm of tensile pulling rate was observed for clay ~ sand-4 (1:3) and clay ~ sand-5 (3:1) for the pulling rate of 0.01 to 1.0 mm/min.  相似文献   

8.
This paper investigates the effect of recycled polyester fiber, produced from polyethylene(PET) bottles, in combination with nano-Si O2 as a new stabilizer to improve the mechanical properties of soils. We intend to study the effect of adding nano-Si O2 and recycled polyester fiber on soil engineering properties,especially the shear strength and unconfined compressive strength(UCS), using clayey soil with low liquid limit. Three different combinations of fiber-soil ratios ranging between 0.1% and 0.5% as well as three different combinations of nano-soil ratios ranging between 0.5% and 1% are used. The shear strength and UCS of treated specimens are obtained from direct shear test and unconfined compression test, respectively. Results of this study show that the addition of recycled polyester fiber and nano-Si O2 increases the strength of soil specimens. Both the shear strength and UCS are improved by increasing the contents of recycled polyester fiber and nano-Si O2 in the soil mixture. The increase in the nano-Si O2 content leads to a reduction in failure strain, but the increase in the content of recycled polyester fiber leads to an increase in failure strain. The increase in the contents of recycled polyester fiber and nanoSi O2 leads to an increase in elastic modulus of soils. Based on the test results, the addition of recycled polyester fiber improves the mechanical properties of soils stabilized with nano-Si O2 as well as the recycled polyester fiber has a positive effect on soil behaviors.  相似文献   

9.
A series of large-scale direct shear tests were conducted to investigate the behavior of unreinforced and geogrid-reinforced ballast at different rates of shearing. Fresh granite ballast with an average particle size (D50) of 42?mm and five geogrids having different aperture shapes and sizes was used in this study. Tests were performed at different normal stresses (σn) ranging from 35?kPa to 140?kPa and at different rates of shearing (Sr) ranging from 2.5 to 10.0?mm/min. The laboratory test results revealed that the shear strength of ballast was significantly influenced by the rate of shearing. The internal friction angle of ballast (φ) was found to decrease from 66.5° to 58° when the shearing rate (Sr) was increased from 2.5 to 10.0?mm/min. It is further observed that the interface shear strength has improved significantly when the ballast was reinforced with geogrids. The interface efficiency factor (α), defined as the ratio of the shear strength of the interface to the internal shear strength of ballast, varies from 0.83 to 1.06. The sieve analysis of samples after the testing reveals that a significant amount of particle breakage occurs during shearing. The value of breakage, evaluated in terms of Marsal's breakage index (Bg), increases from 5.12 to 13.24% with an increase in shearing rates from 2.5 to 10.0?mm/min. Moreover, the influence of aperture shape and size of geogrid on the behavior of ballast-geogrid interfaces was also examined in this study.  相似文献   

10.
Effect of fiber-reinforcement on the strength of cemented soils   总被引:1,自引:0,他引:1  
This study aims to verify the differences in the strength of an artificially cemented sandy soil with and without fiber reinforcement. The controlling parameters evaluated were the amount of cement, porosity, moisture content, and voids/cement ratio. A series of unconfined compression tests and suction measures were carried out. The results show that fiber insertion in the cemented soil, for the whole range of cement studied, causes an increase in unconfined compression strength. The UCS increased linearly with the amount of cement and reduced with the increase in porosity (η) for both the fiber-reinforced and unreinforced specimens. A power function fits well as the relation between unconfined compressive strength (UCS) and porosity (η). Finally, it was shown that the voids/cement ratio is a good parameter in the evaluation of the unconfined compressive strength of the fiber-reinforced and unreinforced cemented soil studied.  相似文献   

11.
Subgrade soils are very important materials to support highways. Resilient modulus (Mr) has been used for characterizing stress-strain behavior of subgrades subjected to repeated traffic loadings. Recently the repeated triaxial test procedure has been upgraded through AASHTO T 307. Since the testing procedure is still complex, the testing has not been widely implemented in practice. In order to evaluate resilient behavior of compacted subgrades soils, the repeated triaxial test and the unconfined compressive test as well as some fundamental property tests were conducted. In this study, the applicability of a simplified procedure with a confining pressure of 13.8 kPa and deviator stresses of 13.8, 27.6, 41.4, 55.2, 69 and 103.4 kPa was investigated on the typical sandy–silty–clay and silty–clay subgrade soils encountered in Indiana. The results obtained from the simplified procedure are comparable with those obtained from AASHTO T 307 which calls for 15 combinations of stresses. This shows the simplified procedure to be feasible and effective for design purpose. Some soils compacted wet of optimum moisture content showed an excessive permanent deformation. This phenomenon was investigated by the comparison of the unconfined compressive test and the repeated triaxial test results. For soils exhibiting excessive permanent deformation, use of deformed length is desirable for more accurate calculation of Mr. Usually the soils compacted dry of optimum shows the largest Mr for sandy–silty–clay soils due to capillary suction, but it is not necessarily true for silty–clay soils. A predictive model to estimate regression coefficients k1, k2, and k3 using 11 soil variables obtained from the soil property tests and the standard Proctor compaction tests was developed. The predicted regression coefficients compare well with measured ones.  相似文献   

12.
Mechanical behavior of lightweight soil reinforced with waste fishing net   总被引:1,自引:0,他引:1  
Lightweight soil is cement-treated and consists of dredged clayey soil, cement, and air-foam. Reinforced lightweight soil (RLS) contains waste fishing net to increase its shear strength. This paper investigates the strength characteristics and stress–strain behavior of reinforced and unreinforced lightweight soils. Test specimens were prepared with varying admixtures of cement content (8%, 12%, 16%, and 20% by the weight of untreated soil), initial water content (125%, 156%, 187%, 217%, and 250%), air-foam content (1%, 2%, 3%, 4%, and 5%), and waste fishing net (0%, 0.25%, 0.5%, 0.75%, and 1%). Then several series of unconfined compression tests and one-dimensional compression tests were conducted. The experiments with lightweight soil indicated that the unconfined compressive strength increased with an increase in cement content, but decreased with increasing water content and air-foam content. The stress–strain relationship and the unconfined compressive strength were influenced by the percentage of waste fishing net. In addition, the strength of RLS generally increased after adding waste fishing net due to the bond strength and the friction at the interface between waste fishing net and soil mixtures, but the amount of increase in compressive strength was not directly proportional to the percentage of waste fishing net. The results of testing indicated that the maximum increase in compressive strength was obtained for a waste fishing net content of about 0.25%. The bulk unit weight of lightweight soil was strongly dependent on the air-foam content. The compression characteristics of lightweight soil, including the yield stress and compression index, did not depend greatly on whether the samples were cured underwater or in air.  相似文献   

13.
提出海砂–海泥混合料作为海堤填筑材料。通过室内试验对不同掺合比的海砂海泥混合料的土体强度参数、压缩性能以及渗透性能进行对比分析,结果表示海砂–海泥按质量比1.5∶1掺合时,混合料的物理力学性质指标最接近工程要求。为改善混合料工程性质,采用水泥作为固化剂,通过一系列室内试验对掺合比1.5∶1的固化混合物的强度特性、压缩特性、渗透特性进行研究。结果表明:随着水泥掺量和龄期的增加,固化混合料的无侧限抗压强度、抗剪强度均有很大提高;存在7 d的早期强度;应力应变曲线在水泥掺量为8%与10%时具有有明显的峰值,且脆性破坏特征明显;渗透系数大幅度降低;水泥掺量为6%时,28 d龄期固化混合料便属于低压缩性土范畴。  相似文献   

14.
《Soils and Foundations》2007,47(2):171-184
A technique called the cement-mixing and mechanical dehydration method (CMD) as one of recycling techniques for soft clay slurry is developed. In order to evaluate the effectiveness of the CMD for increasing the strength of soft clay, a series of unconfined compression tests and several durability tests were performed together with the literature review of unconfined compressive strength in cement-treated soils. Moreover, a series of constant strain rate consolidation tests were also performed to evaluate the effects of cement content and dehydration speed on the permeability of cement-treated clay. The following conclusions are obtained: 1) Literature review and theoretical considerations on the shear strength of cement-treated soils show that an additional treatment for the purpose of increasing the density of cement-treated specimen is effective for increasing the shear strength of cement-treated soil. 2) The mechanical dehydration of soft clay with high pressure is accelerated by cement mixing, where the coefficient of consolidation of cement-treated clay increases as the cement content increases. 3) The high-strength specimen having the unconfined compressive strength of more than 20 MPa can be created from soft clay treated by the CMD with the cement content of over 20% and the dehydration pressure of 20 MPa.  相似文献   

15.
《Soils and Foundations》2005,45(1):153-169
The sedimentary environment and the effects of sample disturbance on strength and consolidation properties of Busan New Port clays are examined through microfossils and radiocarbon age analyses and unconfined compression, K0-consolidated undrained triaxial compression and extension tests and consolidation tests. In this study, only one or two samples, 74 mm in diameter and 100 mm in height, obtained from different depths, are used for the whole series of tests to provide small-sized specimens. The sedimentation rates of Busan New Port clays were (3.7-7.8) mm/year and higher than those for the coastal areas of the USA, Thailand and Japan. The in-situ undrained shear strength and consolidation parameters were estimated using Shogaki's method and compared with those of other test results and evaluated. Busan New Port clays are lightly overconsolidated clays. It can be seen that the consolidation settlements, which were greater than those estimated, were observed in Holocene Busan clay, are caused by the underestimation of the compression index and coefficient of consolidation values caused by sample disturbance.  相似文献   

16.
In the case of cement-stabilized soils cured under the influence of overburden stress, it is necessary to consider two different timelines of cementation and consolidation, along which the structures of stabilized soils evolve. These two timelines are interrelated and ought not to be considered separately, especially in the early stage of curing when significant structural changes occur. In this study, the strength and deformation characteristics of cement-stabilized clay subjected to overburden stress during curing was investigated using an unconfined compression test apparatus. For this purpose, three types of specimens were prepared by stabilizing very soft clay with different amounts of cement. Overburden stress was applied for three different time durations during curing. In the series of unconfined compression tests conducted on the specimens with no overburden stress applied during curing, the axial stress initially increases rapidly, then was maintained before finally dropping. In the series of tests with overburden stress applied during curing, the axial stress continues to increase gradually before rapidly declining. The values of unconfined compressive strength are larger for the specimens subjected to overburden stress during curing. The values of the unconfined compressive strength also increase linearly as the duration of applied overburden stress increases. The increase in strength apparently occurs due to increasing dry density accompanied by a decrease in the water content due to the drainage of pore water during the application of overburden stress.  相似文献   

17.
A high-pressure low-temperature plane strain testing apparatus was developed for visualizing the deformation of methane hydrate-bearing sand due to methane hydrate production. Using this testing apparatus, plane strain compression tests were performed on pure Toyoura sand and methane hydrate-bearing sand with localized deformation measurements. From the results, it was observed that the methane hydrate-free specimens, despite their relatively high density, showed changes in compressive volume. Marked increases in the initial stiffness and strength of the methane hydrate-bearing sand were observed (methane hydrate saturation of SMH=60%). Moreover, the volumetric strain changed from compressive to dilative. For the specimens with methane hydrate, a dilative behavior above SMH=0% was observed. An image analysis showed that the shear bands of the methane hydrate-bearing sand were thinner and steeper than those of the host sand. In addition, the dilative volumetric strain in the shear band increased markedly when methane hydrate existed in the pore spaces.  相似文献   

18.
《Soils and Foundations》2007,47(4):731-748
An artificial lightweight soil has been developed as a backfill to reduce the earth pressure behind port and harbor structures. To reduce the unit weight lightening ingredient such as air foam or EPS beads is mixed within slurry of dredged soft clay, while cement is used as stabilizer to warrant compressive strength. This experimental study aims to characterize the strength and deformation properties of lightweight treated soil cured in water pressure. Samples of two types of lightweight treated soil mixed with air foam or EPS were cured under various pressures, and subjected to undrained shearing tests on triaxial apparatus modified to detect volumetric change. Though high pressures inevitably compress lightener and consequently incur increment in unit weight, pressured curing did not reduce the compressive strength, qmax = (σac)max. It was also found that the deformation modulus E50 greatly decreases with relative confining pressure σc/qmax. The lightweight soils maintained relatively large residual strengths, showing no significant sign of brittle failure as often confronted in unconfined compression test. It was observed that the critical state line exists when subjected to ultimate strains, and that the peak deviator stress envelop was identified in effective stress path plane for air foam mixed cases alone. K0-consolidation tests were conducted on modified triaxial apparatus, showing that K0 values from the quasi one dimensional tests decline to as small as 0.1 to 0.15 around axial strain of 0.5~1% at near yielding points. Poisson's ratios based on both undrained shearing and K0-consolidation are compared in consistent tendency with minimal values of 0.1 to 0.2 near the identical yielding points. Yet it is revealed from the obtained compression curves that the compressibility increases drastically by some 100-fold when comparing before and after yielding for lightweight treated soil. This fact strikes the importance of not overloading lightweight treated soil by its compressive strength.  相似文献   

19.
Compacted soils are widely used as the subgrade layer for pavements. Knowledge of the mechanical properties of subgrade soils under cyclic and static loading conditions and their variation under the influence of environmental factors is required for the rational design of pavements based on mechanistic methods. This paper presents an experimental investigation of the cyclic and static moduli and the strength properties of seven different compacted Canadian subgrade soils considering the variation in the post-compaction moisture content. Cyclic triaxial tests were performed to reliably determine the resilient modulus (MR). Unconfined compression tests, which allow an unloading-reloading loop at 1% strain, were performed to determine the deviator stress (Su1%) at 1% strain, the reloading elastic modulus (E1%) at 1% strain and the unconfined compressive strength (qu) at failure. The physical properties, the chemical and mineralogical compositions, and the soil-water characteristics of these soils were also determined. Relationships were developed to predict the MR from the Su1%, E1%, qu and soil physical properties for the investigated subgrade soils because the experimental determination of MR is both expensive and time-consuming. The studies presented in this paper provide useful information and approaches that can be used to promote the implementation of mechanistic pavement design methods using simple techniques.  相似文献   

20.
对击实后的红粘土土样在饱和前、饱和后进行了三轴剪切试验和无侧限抗压强度试验,研究其抗剪强度特征的变化规律。针对原状土样和重塑土样在脱湿或加湿过程中无侧限抗压强度的变化进行了研究。研究表明,在脱湿过程中,土体的抗剪强度逐渐增大,而且原状土的应力应变关系曲线一般呈应变软化的特点,而重塑土的应力应变关系曲线则一般呈现硬化的特点;在加湿过程中,原状土无侧限抗压强度峰值并不明显。分析表明,脱湿过程或加湿过程中土样强度随含水率的变化是显著的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号