共查询到4条相似文献,搜索用时 0 毫秒
1.
《Ergonomics》2012,55(8):1139-1153
A laboratory study was conducted to determine one-handed dynamic and static pulling strengths of 50 males and 49 females from 14 to 71 years of age. The dynamic strength for a 11m pull was measured to simulate the act of starting a lawn mower engine for four different starting-rope handle locations: on the engine, in the middle, on the right and on the left side of the frame. The last three were located at the back of the lawn mower at a vertical height of 63 cm from the floor and the handle on the engine was located at 42 cm. Static strength was measured for the handle in the middle. Ratings of perceived exertion were recorded for different body parts. Peak and average dynamic pulling strengths were 55% and 34% of static pulling strengths. Dynamic pulling strengths were highly correlated with peak velocity (r = 0·84). Men in the age group 21-34 years had the highest strength and women in the age group 51-71 years the least strength. Dynamic pulling strengths for women were 62% of strengths for men. Women took 10% longer to pull, had a lower peak velocity (16%), reached peak force faster (17%) and took a longer time (6%) to reach peak velocity than men. The starting handle located on the engine resulted in the maximum pulling strength and on the left side in the minimum strength. However, two out of three subjects preferred the handle either on the right side or in the middle. Fifty-five percent of the subjects indicated they would prefer a height higher than 63 cm. Maximum stresses were perceived on the shoulder and upper arm with a mean rating between fairly light and somewhat hard. Graphs of cumulative frequency distributions of average and peak dynamic pulling strengths are presented to aid in the determining forces required to start a lawn mower engine in order to satisfy a desired percentage of the population. 相似文献
2.
《Ergonomics》2012,55(8):1363-1374
A laboratory study was conducted to determine the effects of the speed of lifting and box size on isokinetic strength and to compare isokinetic lifting strengths with static lifting strengths and psychophysically determined maximum acceptable weights. Nine male college students lifted three different boxes (250, 380 and 510 mm wide) from the floor to a bench height of 0.8 m using a free-style lifting technique at a rate of 0.2 lifts min?1. For each lifting task static strength was measured at the origin of lift. Isokinetic lifting strength was measured at 0.41,0.51 and 0.6 ms?1 using a Biokinetic ergometer and attaching boxes to the load cell. Ratings of perceived exertion were recorded for the low back. There was a progressive decrease in mean and peak isokinetic lifting strengths both with an increase in lifting speed and with an increase in box width (p<0.01). The lifting speed had a much greater effect (29% and 27%) than the box width (18% and 15%) on mean and peak isokinetic lifting strengths. However, high speed lifting was perceived subjectively to be less stressful (RPE = 10.7) than slow speed lifting (RPE = 12.7). Static strength and maximum acceptable weight had higher correlations with mean isokinetic strengm (r = 0.65 and 0.82) than with peak isokinetic strength (r = 0.52 and 0.73). At 0.41 ms?1, mean isokinetic strength was 6% greater than the mean static strength (p ≥0,05). Extrapolation of mean isokinetic strength data showed that at 0.73 ms?1 the estimated mean isokinetic strengths were within 6% of maximum acceptable weights. It is concluded that isokinetic strength is highly dependent upon die speed of lifting. At a slow speed (0.41 ms?1), mean isokinetic strength is equal to mean static strength; and, at a high speed (0.73 ms?1), it appears to be equal to the maximum acceptable weight. It is recommended that both speed of lifting and box width should be controlled carefully to simulate job-specific isokinetic lifting strength. 相似文献
3.
We assess the one-handed static pull strength of a Chinese population and compare it to that of an American sample. Fifty men and 50 women in five age groups were asked to exert their maximum one-handed pull strength in three pulling directions (across, front and side) and from four pulling heights (61 cm, 76 cm, waist height and above-shoulder height). The results showed that women had less pull strength than men under all of the conditions tested. The front and side pulling resulted in the greatest pull strength, with a decrease detected when the pulling height was increased. The American sample exhibited greater strength than the Chinese. Body mass and men’s handgrip force were also associated with the pull strength. These variables should be taken into account in the development of tasks related to one-handed pulling.
Practitioner summary:
In this paper, we report a laboratory-based experiment conducted to assess the one-handed static pull strength of a Chinese population and compare the results with those of an American population. The variables associated with pull strength included gender, pulling direction, pulling height, race, body mass and men’s handgrip force. 相似文献
4.
This paper provides a new approach to the bipedal robot stability problems in presence of external disturbances in vertical
posture of the robot, during walking and during object handling. This approach is based on synergy between the dynamic motions
of balancing masses and arms to reject large perturbations applied to the upper part of ROBIAN robot. In these cases, the
stabilization is carried out in the first time with a trunk having 4 degrees of freedom (dof): one rotational and three translational
movements. In the second time, the stabilization is performed with a system with arms and having 10 dof. During the walk,
the trunk elements of ROBIAN reproduce necessary movements to perform the dynamic walking gait of the robot. The compensation
of external three-dimensional efforts applied to the robot is achieved firstly by the trunk and secondly with the arms. This
study allows us to determine on-line the required movements and accelerations of the trunk elements in order to maintain the
robot stability and shows the importance of the arms for the robot stability. 相似文献