首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular dichroism (CD) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy are used to establish the secondary structure of peptides containing one or more transmembrane segments (M1-M4) of the Torpedo californica nicotinic acetylcholine receptor (AChR). Peptides containing the M2-M3 and M1-M2-M3 transmembrane segments of the AChR beta-subunit and the M4 segment of the alpha- and gamma-subunits were isolated from proteolytic digests of receptor subunits, purified, and reconstituted into lipid vesicles. For each peptide, an amide I vibrational frequency centered between 1650 and 1656 cm-1 and negative CD absorption bands at 208 and 222 nm indicate that the peptide is largely alpha-helical. In addition, the CD spectrum of a tryptic peptide of the alpha-subunit containing the M1 segment is also consistent with a largely alpha-helical structure. However, secondary structure analysis of the alpha-M1 CD spectrum indicates the presence of other structures, suggesting that the M1 segment may represent either a distorted alpha-helix, likely the consequence of several proline residues, or may not be entirely alpha-helical. Overall, these findings are consistent with studies that indicate that the transmembrane region of the AChR comprises predominantly, if not exclusively, membrane-spanning alpha-helices.  相似文献   

2.
We have directly determined the amide band resonance Raman spectra of the "average" pure alpha-helix, beta-sheet, and unordered secondary structures by exciting within the amide pi-->pi* transitions at 206.5 nm. The Raman spectra are dominated by the amide bands of the peptide backbone. We have empirically determined the average pure alpha-helix, beta-sheet, and unordered resonance Raman spectra from the amide resonance Raman spectra of 13 proteins with well-known X-ray crystal structures. We demonstrate that we can simultaneously utilize the amide I, II, and III bands and the Calpha-H amide bending vibrations of these average secondary structure spectra to directly determine protein secondary structure. The UV Raman method appears to be complementary, and in some cases superior, to the existing methods, such as CD, VCD, and absorption spectroscopy. In addition, the spectra are immune to the light-scattering artifacts that plague CD, VCD, and IR absorption measurements. Thus, it will be possible to examine proteins in micelles and other scattering media.  相似文献   

3.
It is generally considered that intermediates of protein folding contain partially formed native-like secondary structures. In contrast, we recently reported that the kinetic folding intermediate of bovine beta-lactoglobulin contains non-native alpha-helical structures. To understand the mechanism that stabilizes the non-native intermediate, we characterized by circular dichroism (CD) the equilibrium unfolding transition of beta-lactoglobulin induced by guanidine hydrochloride (Gdn-HCl) at pH 2 and 4 degrees C. The unfolding transition measured by near-UV CD preceded the transition measured by far-UV CD, indicating the accumulation of the intermediate state. The far-UV CD spectrum of the intermediate, obtained by global fitting analysis of the CD spectra in the presence of various concentrations of Gdn-HCl, was similar to the burst-phase intermediate observed in the refolding kinetics, and contained non-native alpha-helical structures. Addition of 10% (v/v) 2,2,2-trifluoroethanol (TFE) increased the helical content of the equilibrium intermediate, although the protein still assumed the native structure in the absence of Gdn-HCl. A phase diagram of the conformational states, i.e. the alpha-helical intermediate, unfolded and native states, against the concentration of TFE and Gdn-HCl was constructed. This indicated that, because of the high helical preference of the amino acid sequence of beta-lactoglobulin, the helical region protrudes into the boundary between the native and unfolded states, resulting in non-monotonic accumulation of the helical intermediate upon equilibrium unfolding of the native beta-sheet structure. This is the first observation to indicate that a non-native alpha-helical intermediate accumulates during equilibrium unfolding of a predominantly beta-sheet protein.  相似文献   

4.
5.
Membrane topology of the H+,K+-ATPase has been studied after proteolytic degradation of the protein by proteinase K. Proteinase K had access to either the cytoplasmic part of the protein or to both sides of the membrane. Fourier transform infrared attenuated total reflection spectroscopy indicated that membrane-associated domain of the protein represented about 55% of the native protein, meanwhile the cytoplasmic part represented only 27% of the protein. The secondary structure of the ATPase and of its membrane-associated domains was investigated by infrared spectroscopy. The secondary structure of the membrane-associated structures and of the entire protein was quite similar (alpha-helices, 35%; beta-sheets, 35%; turns, 20%; random, 15%). These data were in agreement with 10 alpha-helical transmembrane segments but suggested a participation of beta-sheet structures in the membrane-associated part of the protein. Polarized infrared spectroscopy indicated that the alpha-helices were oriented nearly perpendicular to the membrane plane. No preferential orientation could be attributed to the beta-sheets. Monitoring the amide hydrogen/deuterium exchange kinetics demonstrated that the membrane associated part of the ATPase molecule is characterized by a relatively high accessibility to the solvent, quite different from that observed for bacteriorhodopsin membrane segments.  相似文献   

6.
Whereas bovine beta-lactoglobulin is a predominantly beta-sheet protein, it has a marked alpha-helical preference and can be considered to be a useful model of the alpha-->beta transition, a key issue for understanding the folding and biological function of a number of proteins. In order to understand the mechanism of the alpha-->beta transition, the backbone structures of the recombinant bovine beta-lactoglobulin A in the native state and in the highly helical state induced by 2,2,2-trifluoroethanol were characterized by 1H, 13C and 15N multidimensional NMR spectroscopy. Overall, the secondary structures in the native state were similar to those of the crystal structure. On the other hand, beta-lactoglobulin in the 2,2,2-trifluoroethanol state was composed of many alpha-helical segments. The presence of the persistent alpha-helices in the helical state and the core beta-sheet in the native state suggested that during folding native-like core beta-sheet and several non-native helices are formed first and the remaining beta-sheet is subsequently "induced" through interaction with the pre-existing beta-sheet.  相似文献   

7.
The amino-terminal segment of the membrane-anchored subunit of influenza hemagglutinin (HA) plays a crucial role in membrane fusion and, hence, has been termed the fusion peptide. We have studied the secondary structure, orientation, and effects on the bilayer structure of synthetic peptides corresponding to the wild-type and several fusogenic and nonfusogenic mutants with altered N-termini of the influenza HA fusion peptide by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. All peptides contained segments of alpha-helical and beta-strand conformation. In the wild-type fusion peptide, 40% of all residues were in alpha-secondary and 30% in beta-secondary structures. By comparison, the nonfusogenic peptides exhibited larger beta/alpha secondary structure ratios. The order parameters of the helices and the amide carbonyl groups of the beta-strands of the wild-type fusion peptide were measured separately, based on the infrared dichroism of the respective absorption bands. Order parameters in the range 0.1-0.7 were found for both segments of the wild-type peptide, which indicates that they are most likely aligned at oblique angles to the membrane normal. The nonfusogenic but not the fusogenic peptides induced splitting of the infrared absorption band at 1735 cm(-1), which is assigned to stretching vibrations of the lipid ester carbonyl bond. This splitting, which reports on an alteration of the hydrogen bonds formed between the lipid ester carbonyls and water and/or hydrogen-donating groups of the fusion peptides, correlated with the beta/alpha ratio of the peptides, suggesting that unpaired beta-strands may replace water molecules and hydrogen-bond to the lipid ester carbonyl groups. The profound structural changes induced by single amino acid replacements at the extreme N-terminus of the fusion peptide further suggest that tertiary or quaternary structural interactions may be important when fusion peptides bind to lipid bilayers.  相似文献   

8.
The Chou-Fasman method has been widely used for predicting protein secondary structure. It is based on knowledge of the potential of amino acid residues to form alpha-helical or beta-sheet regions in proteins. Our main interest in this study was to examine the reliability of these Chou-Fasman parameters. We calculated the Chou-Fasman parameters, with 95% confidence limits, of 144 non-homologous proteins consisting of 155 chains, and a total of 33 118 amino acid residues. All of the protein chains used were X-ray structures known at a resolution of at least 2.5 A. We compared the results of our calculations with those previously done by Chou and Fasman. Our results show that Chou and Fasman classified four amino acid residues wrongly in alpha-helical regions and one in a beta-sheet region. This is so, because the confidence limits we calculated did not include the values determined by Chou and Fasman. Moreover, the confidence limit calculations contradict most of the Chou-Fasman classification of amino acid residues.  相似文献   

9.
We have synthesized and characterized a family of structured oligo-N-substituted-glycines (peptoids) up to 36 residues in length by using an efficient solid-phase protocol to incorporate chemically diverse side chains in a sequence-specific fashion. We investigated polypeptoids containing side chains with a chiral center adjacent to the main chain nitrogen. Some of these sequences have stable secondary structure, despite the achirality of the polymer backbone and its lack of hydrogen bond donors. In both aqueous and organic solvents, peptoid oligomers as short as five residues give rise to CD spectra that strongly resemble those of peptide alpha-helices. Differential scanning calorimetry and CD measurements show that polypeptoid secondary structure is highly stable and that unfolding is reversible and cooperative. Thermodynamic parameters obtained for unfolding are similar to those obtained for the alpha-helix to coil transitions of peptides. This class of biomimetic polymers may enable the design of self-assembling macromolecules with novel structures and functions.  相似文献   

10.
Peptides derived from conserved heptad-repeat regions of several viruses have been shown recently to inhibit virus-cell fusion. To find out their possible role in the fusion process, two biologically active heptad-repeat segments of the fusion protein (F) of Sendai virus, SV-150 (residues 150-186), and SV-473 (residues 473-495) were synthesized, fluorescently labeled and spectroscopically characterized for their structure and organization in solution and within the membrane. SV-150 was found to be 50-fold less active than SV-473 in inhibiting Sendai virus-cell fusion. Circular dichroism (CD) spectroscopy revealed that in aqueous solution, the peptides are self-associated and adopt low alpha-helical structure. However, when the two peptides are mixed together, their alpha-helical content significantly increases. Fluorescence studies, CD, and polarized attenuated total reflection infrared (ATR-FTIR) spectroscopy showed that both peptides, alone or as a complex, bind strongly to negatively charged and zwitterionic phospholipid membranes, dissociate therein into alpha-helical monomers, but do not perturb the lipid packing of the membrane. The ability of the peptides to interact with each other in solution may be correlated with antiviral activity, whereas their ability to interact with the membrane, together with their location near the fusion peptide and the transmembrane domain, suggests a revision to the currently accepted model for viral-induced membrane fusion. In the revised model, in the sequence of events associated with viral entry, the two heptad-repeat sequences may assist in bringing the viral and cellular membranes closer, thus facilitating membrane fusion.  相似文献   

11.
Conformational changes in the prion protein (PrP) seem to be responsible for prion diseases. We have used conformation-dependent chemical-shift measurements and rotational-resonance distance measurements to analyze the conformation of solid-state peptides lacking long-range order, corresponding to a region of PrP designated H1. This region is predicted to undergo a transformation of secondary structure in generating the infectious form of the protein. Solid-state NMR spectra of specifically 13C-enriched samples of H1, residues 109-122 (MKHMAGAAAAGAVV) of Syrian hamster PrP, have been acquired under cross-polarization and magic-angle spinning conditions. Samples lyophilized from 50% acetonitrile/50% water show chemical shifts characteristic of a beta-sheet conformation in the region corresponding to residues 112-121, whereas samples lyophilized from hexafluoroisopropanol display shifts indicative of alpha-helical secondary structure in the region corresponding to residues 113-117. Complete conversion to the helical conformation was not observed and conversion from alpha-helix back to beta-sheet, as inferred from the solid-state NMR spectra, occurred when samples were exposed to water. Rotational-resonance experiments were performed on seven doubly 13C-labeled H1 samples dried from water. Measured distances suggest that the peptide is in an extended, possibly beta-strand, conformation. These results are consistent with the experimental observation that PrP can exist in different conformational states and with structural predictions based on biological data and theoretical modeling that suggest that H1 may play a key role in the conformational transition involved in the development of prion diseases.  相似文献   

12.
HIV-1 transmembrane envelope glycoprotein (gp41) has an unusually long cytoplasmic domain that has secondary associations with the inner leaflet of the membrane. Two highly amphiphatic alpha-helices in the cytoplasmic domain of gp41 have previously been shown to interact with lipid bilayers. We have detected a highly conserved leucine zipper-like sequence between the two alpha-helices. A peptide corresponding to this segment (residues 789-815, LLP-3) aggregates in aqueous solution, but spontaneously inserts into phospholipid membranes and dissociates into alpha-helical monomers. The peptide perturbs the bilayer structure resulting in the formation of micelles and other non-bilayer structures. Tryptophan fluorescence quenching experiments using brominated phospholipids revealed that the peptide penetrates deeply into the hydrophobic milieu of the membrane bilayer. The peptide interacts equally with zwitterionic and negatively-charged phospholipid membranes and is protected from proteolytic digestion in its membrane-bound state. Polarized attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy showed that the LLP-3 alpha-helix axis is about 70 degrees from the normal to the membrane plane. The ATR-FTIR CH2-stretching dichroic ratio increases when the peptide is incorporated into pure phospholipid membranes, further indicating that the peptide can deeply penetrate and perturb the bilayer structure. Integrating these data with what is already known about the membrane-associating features of adjacent segments, we propose a revised structural model in which a large portion of the cytoplasmic tail of the HIV-1 envelope glycoprotein is associated with the membrane.  相似文献   

13.
14.
Fourier transform infrared spectroscopy has been used to investigate the conformational changes of glycinin. a major storage protein of soybean seeds, upon film-forming. The results show that the secondary structure of glycinin is mainly composed of a beta-sheet (48%) and unordered (49%) structures. The amide I band of glycinin in film-forming conditions, i.e. in alkaline media and in the presence of plasticizing agent, reveals the conversion of 18% of the secondary structure of the protein from the beta-sheet (6%) and random coil (12%) to the alpha-helical conformation due to the helicogenic effect of the ethylene glycol used as the plasticizing agent. Conformational changes also occur upon the film-forming process leading to the formation of intermolecular hydrogen-bonded beta-sheet structures. Results obtained from other plant families indicate that, whatever the origin and conformation of protein, formation of films leads to the appearance of intermolecular hydrogen-bonded beta-sheet structures, suggesting that this type of structure might be essential for the network formation in films. Thus, it is hypothesized that, in the film state, intermolecular hydrogen bonding between segments of beta-sheet may act as junction zones in the film network. This study reveals for the first time that there is a close relationship between the conformation of proteins and the mechanical properties of films.  相似文献   

15.
Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by solid-phase procedures and purified to near homogeneity. CD, nmr, and modeling analysis indicated that in aqueous media the first extracellular loop peptide E1(107-125), the third intracellular loop peptide I3(231-243), and the carboxyl terminus peptide I4(350-372) were mostly disordered. In contrast, the second extracellular loop peptide E2(191-206) assumed a well-defined structure in aqueous medium and the sixth transmembrane domain peptide receptor M6(252-269, C252A) was highly helical in trifluoroethanol/water (4:1), exhibiting a kink at Pro258. A synthetic peptide containing a sequence similar to that of the sixth transmembrane domain of a constitutively active alpha-factor receptor M6(252-269, C252A, P258L) in which Leu replaces Pro258 exhibited significantly different biophysical properties than the wild-type sequence. In particular, this peptide had very low solubility and gave CD resembling that of a beta-sheet structure in hexafluoroacetone/water (1:1) whereas the wild-type peptide was partially helical under identical conditions. These results would be consistent with the hypothesis that the constitutive activity of the mutant receptor is linked to a conformational change in the sixth transmembrane domain. The study of the receptor segments also indicate that peptides corresponding to loops of the alpha-factor receptor do not appear to assume turn structures.  相似文献   

16.
The structure of a truncated form of the gamma-subunit of phosphorylase kinase (PHKgammat) has been solved in a ternary complex with a non-hydrolysable ATP analogue (adenylyl imidodiphosphate, AMPPNP) and a heptapeptide substrate related in sequence to both the natural substrate and to the optimal peptide substrate. Kinetic characterization of the phosphotransfer reaction confirms the peptide to be a good substrate, and the structure allows identification of key features responsible for its high affinity. Unexpectedly, the substrate peptide forms a short anti-parallel beta-sheet with the kinase activation segment, the region which in other kinases plays an important role in regulation of enzyme activity. This anchoring of the main chain of the substrate peptide at a fixed distance from the gamma-phosphate of ATP explains the selectivity of PHK for serine/threonine over tyrosine as a substrate. The catalytic core of PHK exists as a dimer in crystals of the ternary complex, and the relevance of this phenomenon to its in vivo recognition of dimeric glycogen phosphorylase b is considered.  相似文献   

17.
Antimicrobial peptides which adopt mainly or only beta-sheet structures have two or more disulfide bonds stabilizing their structure. The disruption of the disulfide bonds results in most cases in a large decrease in their antimicrobial activity. In the present study we examined the effect of d-amino acids incorporation on the structure and function of a cytolytic alpha-helical peptide which acts on erythrocytes and bacteria. The influence of a single or double d-amino acid replacement in alpha-helical peptides on their structure was reported previously in 50% 2,2,2, trifluoroethanol/water [Krause et al. (1995) Anal. Chem. 67, 252-258]. Here we used Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy and found that the predominant structure of the wild-type peptide is alpha-helix in phospholipid membranes, whereas the structure of the diastereomer is beta-sheet. However, the linear, beta-sheet diastereomer preserved its cytolytic activity on bacteria but not on erythrocytes. Previous studies have shown that the ability of antimicrobial peptides to lyse bacteria but not normal mammalian cells correlated with their ability to disintegrate preferentially negatively charged, but not zwitterionic phospholipid membranes. In contrast, the diastereomer described here disrupts zwitterionic and negatively charged vesicles with similar potencies to those of the hemolytic wild-type peptide. Interestingly, whereas addition of a positive charge to the N-terminus of the wild-type peptide (which caused a minor effect on its structure) increased activity only towards some of the bacteria tested, similar modification in the diastereomer increased activity towards all of them. Furthermore, the modified wild-type peptide preserved its potency to destabilize zwitterionic and negatively charged vesicles, whereas the modified diastereomer had a reduced potency on zwitterionic vesicles but increased potency on negatively charged vesicles. Overall our results suggest that this new class of antimicrobial diastereomeric peptides bind to the membrane in 'carpet-like' manner followed by membrane disruption and breakdown, rather than forming a transmembrane pore which interfere with the bacteria potential. These studies also open a way to design new broad-spectrum antibacterial peptides.  相似文献   

18.
A 12-residue peptide AcDKDGDGYISAAENH2 analogous to the third calcium-binding loop of calmodulin strongly coordinates lanthanide ions (K = 10(5) M-1). When metal saturated, the peptide adopts a very rigid structure, the same as in the native protein, with three last residues AAE fixed in the alpha-helical conformation. Therefore, the peptide provides an ideal helix nucleation site for peptide segments attached to its C terminus. NMR and CD investigations of peptide AcDKDGDGYISAAEAAAQNH2 presented in this paper show that residues A13-Q16 form an alpha-helix of very high stability when the La3+ ion is bound to the D1-E12 loop. In fact, the lowest estimates of the helix content in this segment give values of at least 80% at 1 degreesC and 70% at 25 degreesC. This finding is not compatible with existing helix-coil transition theories and helix propagation parameters, s, reported in the literature. We conclude, therefore, that the initial steps of helix propagation are characterized by much larger s values, whereas helix nucleation is even more unfavorable than is believed. In light of our findings, thermodynamics of the nascent alpha-helices is discussed. The problem of CD spectra of very short alpha-helices is also addressed.  相似文献   

19.
The X-ray structure of the nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been refined at 1.8 A resolution from a hexagonal crystal form with a 17 kDa monomer in its asymmetric unit. The atomic model was derived from the previously determined structure of a point mutant of the protein. It contains 150 amino acid residues out of 155, and 95 solvent molecules. The R-factor is 0.196 and the estimated accuracy of the average atomic position, 0.25 A. The Dictyostelium structure is described in detail and compared to those of Drosophila and Myxococcus xanthus NDP kinases. The protein is a hexamer with D3 symmetry. Residues 8 to 138 of each subunit form a globular alpha/beta domain. The four-stranded beta-sheet is antiparallel; its topology is different from other phosphate transfer enzymes, and also from the HPr protein which, like NDP kinase, carries a phosphorylated histidine. The same topology is nevertheless found in several other proteins that bind mononucleotides, RNA or DNA. Strand connections in NDP kinase involve alpha-helices and a 20-residue segment called the Kpn loop. The beta-sheet is regular except for a beta-bulge in edge strand beta 2 and a gamma-turn at residue Ile120 just preceding strand beta 4. The latter may induce strain in the main chain near the active site His122. The alpha 1 beta 2 motif participates in forming dimers within the hexamer, helices alpha 1 and alpha 3, the Kpn loop and C terminus, in forming trimers. The subunit fold and dimer interactions found in Dictyostelium are conserved in other NDP kinases. Trimer interactions probably occur in all eukaryotic enzymes. They are absent in the bacterial Myxococcus xanthus enzyme which is a tetramer, even though the subunit structure is very similar. In Dictyostelium, contacts between Kpn loops near the 3-fold axis block access to a central cavity lined with polar residues and filled with well-defined solvent molecules. Biochemical data on point mutants highlight the contribution of the Kpn loop to protein stability. In Myxococcus, the Kpn loops are on the tetramer surface and their sequence is poorly conserved. Yet, their conformation is maintained and they make a similar contribution to the substrate binding site.  相似文献   

20.
Matrilin-2 is a member of von Willebrand factor A containing extracellular matrix proteins in which the cDNA-derived sequence shows similar domain organization to cartilage matrix protein/matrilin-1, but information on the protein structure is limited. Here we studied the oligomerization potential of a synthetic peptide NH2-ENLILFQNVANEEVRKLTQRLEEMTQRMEALENRLKYR-COOH corresponding to the C-terminal sequence of mouse matrilin-2. The central portion of this sequence shows a periodicity of hydrophobic residues occupying positions a and d of a heptad pattern (abcdefg)n, which is characteristic for alpha-helical coiled-coil proteins. Circular dichroism spectroscopy revealed a high alpha-helical content, and the shape of the spectra is indicative for a coiled-coil conformation. Chemical cross-linking and size exclusion chromatography suggest a homotrimeric configuration. Thermal denaturation in benign buffer shows a single cooperative transition with DeltaH0 = -375 kJ/mol. Melting temperatures Tm varied from 38 to 51 degreesC within a concentration range of 10 to 85 microM, which is about 35 degreesC lower than determined for a peptide corresponding to the C-terminal domain of matrilin-1. The data suggest that despite the low sequence identity within this region, matrilin-2 will form a homotrimer as matrilin-1 does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号