首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
研究了一种无金属催化剂生长GaN纳米线阵列的方法。通过HCl气体作为催化剂,利用氢化物气相外延(HVPE)系统在GaN/sapphire模板上制备出纯净的GaN纳米线阵列;利用扫描电镜(SEM)、能量分散X射线荧光(EDX)谱和透射电镜(TEM)测试,研究了生长条件的变化对GaN纳米线阵列的影响,分析了GaN纳米线阵列的生长过程并探索了其生长机理,为GaN纳米线阵列的可控生长提供了理论依据。  相似文献   

2.
报道了在GaN表面以Ni纳米岛结构作为模板,利用电感耦合等离子(ICP)刻蚀制备GaN纳米柱的研究结果。原子力显微镜(AFM)测试结果表明,金属Ni薄膜在快速热退火(RTA)作用下形成了平均直径和高度大约分别为325 nm和70 nm的纳米岛状结构。通过电子扫描显微镜(SEM)照片看出,以GaN表面所形成的Ni纳米岛作为模板图形,通过控制ICP刻蚀时间,在一定的刻蚀时间内(2 min)获得有序的并拥有半极性晶面的GaN纳米柱阵列。这种新颖的半极性GaN纳米柱作为氮化物量子阱或者超晶格结构的生长模板,可以有效减小甚至消除极化效应,提高光电子器件的效率和性能。  相似文献   

3.
王如 《光电子.激光》2009,(12):1602-1605
在低温HVPE-GaN/c-Al2O3模板上射频溅射ZnO作为缓冲层,采用氢化物气相外延(HVPE,hydridevapoarphaseepitaxy)法外延生长了高质量的GaN320μm厚膜。用高分辨率双晶X射线衍射仪(DCXRD)、原子力显微镜(AFM)和扫描电子显微镜(SEM)分析了制备的GaN厚膜特性。结果表明,GaN(0002)面的X射线摇摆曲线衍射峰半高宽(FWHM)为336.15arcsec,穿透位错密度(TDD)为107cm-2,外延生长的GaN厚膜晶体质量较好,可以作为自支撑GaN衬底。  相似文献   

4.
Si衬底与GaN之间较大的晶格失配和热失配引起的张应力使GaN外延层极易产生裂纹,如何补偿GaN所受到的张应力是进行Si基GaN外延生长面临的首要问题.采用金属有机化合物化学气相沉积(MOCVD)技术在4英寸(1英寸=2.54 cm)Si (111)衬底上制备了GaN外延材料并研究了不同AlGaN缓冲层结构对Si基GaN外延材料性能的影响,并采用高分辨X射线衍射仪(HRXRD)、原子力显微镜(AFM)、喇曼光谱以及光学显微镜对制备的GaN材料的性能进行了表征.采用3层A1GaN缓冲层结构制备了表面光亮、无裂纹的GaN外延材料,其(002)晶面半高宽为428 arcsec,表面粗糙度为0.194 nm.结果表明,采用3层A1GaN缓冲层结构可以有效地降低GaN材料的张应力和位错密度,进而遏制表面裂纹的出现,提高晶体质量.  相似文献   

5.
采用氢化物气相外延(HVPE)方法在2英寸(1英寸=2.54 cm)c面蓝宝石衬底上外延生长了高质量GaN单晶薄膜.在GaN生长过程中引入点状和条状两种金属Ti掩膜图形层,研究了不同Ti掩膜图形层对外延生长GaN薄膜晶体质量的影响.使用微分干涉相差显微镜(DICM)、扫描电子显微镜(SEM)、阴极荧光光谱(CL)、喇曼光谱和X射线衍射(XRD)对制备的GaN样品结构和形貌进行了表征分析.实验结果表明,Ti掩膜图形层的引入可以在一定程度上改善GaN薄膜的表面形貌,缓解材料中的应力,降低GaN材料中的位错密度,提高材料的结晶质量.同时发现,相比于点状图形,条状Ti图形掩膜层可以更加有效地改善GaN材料的晶体质量,将位错密度降低到3.2×106 cm-2以下.  相似文献   

6.
纳米柱GaN基多量子阱(MQW)拥有量子尺寸效应以及应变释放等特性,对于提高GaN基发光二极管(LED)的发光效率具有重要意义.采用快速热退火(RTA)形成的自组装Ni纳米颗粒作为刻蚀掩膜,利用电感耦合等离子体反应离子刻蚀(ICP-RIE)制备纳米柱InGaN/GaN MQW.通过改变RTA温度发现在800℃以上才能有效形成Ni纳米颗粒掩膜.不同的ICP和射频(RF)功率条件下制备的纳米柱MQW光致发光强度相比于相同结构的平面MQW会发生显著变化.通过优化ICP-RIE的刻蚀条件,可以获得发光强度显著提高的纳米柱MQW结构.同时,纳米柱MQW中压电极化场的减弱会形成光致发光峰位蓝移.  相似文献   

7.
分别用金属In和Ti/Al/Ni/Au合金层制备GaN HEMT结构外延片的霍尔测试电极,并对样品进行霍尔测试.发现In金属与外延片形成非欧姆接触,Ti/Al/Ni/Au合金层与外延片形成良好的欧姆接触.用电化学C-V方法测试样品,得到的载流子浓度与合金电极制备的样品经霍尔测试得到的载流子浓度一致,从而验证了此种霍尔测试方法的准确性,为GaN外延材料的测试提出了准确可行的测试方法.  相似文献   

8.
张洁 《半导体技术》2017,42(9):706-710
研究了在图形蓝宝石衬底(PSS)上利用磁控溅射制备AlN薄膜的相关技术,随后通过采用金属有机化学气相沉积(MOCVD)在相关AlN薄膜上生了长GaN基LED.通过一系列对比实验,分析了AlN薄膜的制备条件对GaN外延层晶体质量的影响,研究了AlN薄膜溅射前N2预处理功率和溅射后热处理温度对GaN基LED性能的作用机制.实验结果表明:AlN薄膜厚度的增加,导致GaN缓冲层成核密度逐渐升高和GaN外延膜螺位错密度降低刃位错密度升高;N2处理功率的提升会加剧衬底表面晶格损伤,在GaN外延膜引入更多的螺位错;AlN热处理温度的升高粗化了表面并提高了GaN成核密度,使得GaN外延膜螺位错密度降低刃位错密度升高;而这些GaN外延膜位错密度的变化又进一步影响到LED的光电特性.  相似文献   

9.
利用低压金属有机物化学气相沉积技术,采用均匀掺杂和渐变Mg-δ掺杂方法,分别在氮化镓(GaN)和高温氮化铝(HT-AlN)模板上,生长了p型GaN外延材料.生长后,双晶X射线衍射和霍尔测试结果表明:HT-AlN模板上采用渐变Mg-δ掺杂方法生长的p型GaN材料,具有最好的晶体质量和电学性能.该p型GaN样品的(0002)面半峰宽值小至178",其空穴氧浓度为5.78×1017 cm-3.在对Cp2Mg/TMGa进行了优化试验后,p型GaN的空穴氧浓度被提高到8.03×1017 cm-3.  相似文献   

10.
利用低压金属有机物化学气相沉积技术,采用均匀掺杂和渐变Mg-δ掺杂方法,分别在氮化镓(GaN)和高温氮化铝(HT-AlN)模板上,生长了p型GaN外延材料.生长后,双晶X射线衍射和霍尔测试结果表明:HT-AlN模板上采用渐变Mg-δ掺杂方法生长的p型GaN材料,具有最好的晶体质量和电学性能.该p型GaN样品的(0002)面半峰宽值小至178",其空穴氧浓度为5.78×1017 cm-3.在对Cp2Mg/TMGa进行了优化试验后,p型GaN的空穴氧浓度被提高到8.03×1017 cm-3.  相似文献   

11.
在干法刻蚀GaN时使用SiO2作为掩蔽物,为了在较快的GaN刻蚀速率下获得良好的GaN/SiO2刻蚀选择比,使用电感耦合等离子刻蚀机(ICP),运用Cl2和Ar作为刻蚀气体,改变ICP功率、直流自偏压、气体总流量、气体组分等工艺条件,并讨论了这些因素对GaN/SiO2刻蚀选择比以及对GaN刻蚀速率的影响。实验结果获得了GaN在刻蚀速率为165nm/min时的GaN/SiO2选择比为8∶1。设备验收时GaN刻蚀速率为70nm/min,GaN/SiO2选择比为3.5∶1,可以应用于实际生产。  相似文献   

12.
以Ti/Al/Ni/Au作为欧姆接触金属体系,通过电感耦合等离子体(ICP)刻蚀的预处理,在氢化物气相外延法生长的单晶氮化镓(GaN)材料的N面实现了良好的欧姆接触,其比接触电阻率为3.7×10-4 Ω·cm2.通过扫描电子显微镜、原子力显微镜、阴极荧光和光致发光谱对GaN N面的表面、光学特性进行了对比表征.结果表明:未刻蚀GaN衬底的N面表面存在一定的损伤层,导致近表面处含有大量缺陷,不利于欧姆接触的形成;而ICP刻蚀处理有效地去除了损伤层.X射线光电子能谱(XPS)分析显示刻蚀后样品的Ga 3d结合能比未刻蚀样品向高能方向移动了约0.3 eV,其肖特基势垒则相应降低,有利于欧姆接触的形成.同时对Fe掺杂半绝缘GaN的N面也进行了刻蚀处理,同样实现了良好的Ti/Al/Ni/Au欧姆接触,其比接触电阻率为0.12 Ω·cm2.  相似文献   

13.
Porous templates were fabricated by hydrogen-etching metal organic chemical vapor deposited gallium nitride (GaN); these templates were used as substrates for the growth of GaN via hydride vapor phase epitaxy. The influence of annealing porous templates on GaN growth behavior was investigated. GaN epitaxied on the unannealing porous template followed the Volmer–Weber mode with the void preserved at the growth plane, whereas the GaN film on the annealed porous templates exhibited a layer-by-layer growth and filled the porous material. The GaN crystal quality was characterized by high-resolution XRD and CL, the results indicated that GaN grown with pores preserved at the template interface had a lower dislocation density than that grown with pores filled, and the best GaN film had a TD density of 104 cm−2.  相似文献   

14.
Mitrofanov  M. I.  Levitskii  I. V.  Voznyuk  G. V.  Tatarinov  E. E.  Rodin  S. N.  Lundin  W. V.  Evtikhiev  V. P.  Mizerov  M.N. 《Semiconductors》2018,52(16):2114-2116
Semiconductors - Our study describes FIB technological aspects of preparing mask for GaN selective area epitaxy on Si3N4/GaN template.  相似文献   

15.
In this paper, a method was demonstrated to reduce the dislocation density of GaN film grown by hydride vapor phase epitaxy (HVPE) on an in situ selective hydrogen-etched GaN/sapphire template. The dislocations regions were etched by hydrogen to form cavities. The porous structure was formed on the GaN template grown by metal organic chemical vapor deposition after in situ hydrogen etching. The etching condition was optimized by modulating the etching temperature, pressure, and etching time. Two-step buffer layer growth and high temperature GaN film deposition were carried on the porous template. The growth parameters were optimized to keep the porous structure unfilled. The dislocations originally located in etched cavities could not propagate to the next layer grown by HVPE. Therefore, the dislocation density could be significantly reduced. High crystal quality of GaN is obtained with a low dislocation density. The full width at half-maximum FWHM of (002) is 35 arcs, and the FWHM of (102) is 48 arcs.  相似文献   

16.
High-quality GaN/AlGaN high-electron-mobility transistors (HEMT) characterized by room temperature mobilities of 1000 cm2 V−1 s−1 and sheet electron densities in the range of 3×1012–2×1013 cm−2 have been grown by reactive molecular-beam epitaxy on insulating C-doped GaN template layers. Growth data and mobility values resulting from over 50 HEMT growth experiments on 2 in. diameter sapphire wafers are presented to show the remarkable overall high yield and reproducibility of the HEMT structures grown by this method. The use of insulating C-doped GaN buffer layers has greatly increased reproducibility of the device structures by ensuring device isolation through controlled carbon doping. Moreover, an undoped GaN channel layer of remarkably low defect density and high mobility can be grown on the C-doped GaN template with high reproducibility. Precise control of the growth temperature was key to achieving the high quality and reproducibility of the structures.  相似文献   

17.
室温下用磁控溅射法在Si(111)衬底上生成Au/SiO2复合纳米颗粒膜。用扫描电子显微镜(SEM)和X射线衍射方法(XRD)对不同温度退火后的Au/SiO2复合薄膜的表面形貌、微观结构进行了表征。SEM结果表明,随着退火温度升高,Au纳米颗粒先形成大的聚集后出现分布均匀的超微颗粒。XRD结果显示700℃时Au的衍射峰最强,随后峰强有所减弱,这与SEM检测结果相吻合。另外实验结果证实在1000℃退火时自组装生成空间分布均匀(直径约为70nm)的Au纳米点,可以用来作为生长一维纳米材料的模板。  相似文献   

18.
Using self-aligned $hbox{SiO}_{2}$ nano-spheres as an etching mask, the authors demonstrated the formation of a GaN-based nano-inverted pyramid (NIP) structure. It was found that crystal quality of the GaN epilayer prepared on an NIP/GaN template was significantly better than that prepared with conventional low-temperature GaN nucleation layer. With the NIP structure, it was found that 20-mA light-emitting-diode (LED) output power can be enhanced by 32%, as compared with the conventional LED.   相似文献   

19.
6H-SiC/GaN pn-heterostructures were grown by subsequent epitaxial growth of p-SiC by low temperature liquid phase epitaxy (LTLPE) and n-GaN by hydride vapor phase epitaxy (HVPE). For the first time, p-type epitaxial layers grown on 6H-SiC wafers were used as substrates for GaN HVPE growth. The GaN layers exhibit high crystal quality which was determined by x-ray diffraction. The full width at a half maximum (FWHM) for the ω-scan rocking curve for (0002) GaN reflection was ∼120 arcsec. The photoluminescence spectra for these films were dominated by band-edge emission. The FWHM of the edge PL peak at 361 nm was about 5 nm (80K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号