首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
小檗碱壳聚糖微球制备及其抗真菌活性测定   总被引:1,自引:0,他引:1  
采用乳化-化学交联法制备了负载小檗碱的壳聚糖微球. 以正交实验对微球形态、粒径、药物包封率和载药率等指标进行了制备工艺条件优化. 显微镜和电镜观察显示微球球形良好,表面光滑,平均粒径约15 mm,包封率为78.98%,载药率为4.78%. 持续30 d的药物释放实验表明,小檗碱可从微球中缓慢释放. 利用生长速率法测定了微球对3种重要植物病原真菌的抑制作用,5 mg/mL微球对番茄早疫病菌(Alternaria solani)的抑菌率达65%.  相似文献   

2.
以大蒜素为模型药物,采用复凝聚法制备了海藻酸钠/明胶/壳聚糖复合微球,考察了不同条件对微球溶胀性、载药性能和缓释性能等指标的影响。结果表明,明胶和海藻酸钠(质量比为1∶3)为2%,大蒜素投入量与混合胶比为1∶2时,制备的载药微球(DSGCM)外形规则,粒径分布在0.8~0.9mm之间,载药量为24.3%,包封率为69.4%,复合微球具有p H敏感性,在p H=7.4介质中微球溶胀率达到450%,药物释放过程符合Higuchi方程,明胶的加入可以延缓DSGCM复合微球的药物释放性能。  相似文献   

3.
利用正硅酸乙酯在W/O乳液中的原位水解聚合,成功制备了包埋井冈霉素的二氧化硅载药空心微球. 对所得产品进行了SEM, XRD, FT-IR和粒径分布等分析,结果表明,载药空心微球粒径分布窄,范围在7.5~15 mm,球状形貌良好,具有空心结构,呈无定型态. 热重分析表明载药空心微球的药物负载量约为31.9%(w),缓释溶出实验显示载药空心微球药物释放持续时间约240 min,最终释放量达总载药量的90%以上.  相似文献   

4.
以壳聚糖(CS)为基质,通过聚乙烯醇(PVA)的引入制备壳聚糖聚乙烯醇复合载体可以分别采用室温和高温酸催化反应两种方法制备出释药性能和结构形态不同的两种复合载药微球Ⅰ和Ⅱ。其中壳聚糖/聚乙烯醇复合载药微球Ⅰ的制备工艺是调节壳聚糖和聚乙烯醇质量比6/5,复合微球Ⅰ的平均粒径1~20μm,载药量13%,LVFX体外12h累积释放80%。而壳聚糖/聚乙烯醇复合载药微球Ⅱ的平均粒径1.69μm,载药量17.1%,LVFX体外6hr基本完全释放。  相似文献   

5.
采用快速膜乳化法制备了聚(乳酸-羟基乙酸)(PLGA)微球,得到制备PLGA微球的优化条件为:过膜压力5 kPa,水相中PVA浓度19 g/L,油/水相体积比1:10,该条件下所制空白微球的平均粒径约为24 mm,粒径分布系数Span<0.7. 在此基础上制备载生长激素释放肽-6(GHRP-6)微球,油相乳化剂浓度2.5 g/L、外水相中NaCl浓度10 g/L条件下所制载GHRP-6微球包埋率最高可达85%,初乳制备方式对药物包埋率及体外释放行为均有较大影响,超声法制备的初乳所得微球内部结构紧密,药物包埋率较高(85%),但释药缓慢;而均质法制备的初乳所得微球内部结构疏松,药物包埋率较低(76.8%),但在体外释放更完全.  相似文献   

6.
目的:以5-氟尿嘧啶(5-FU)为模型药物,明胶为载体材料,制备5-氟尿嘧啶/明胶纳米载药微球,探究药物的缓释效果和抗肿瘤性能。方法:“单凝聚相法”制备明胶纳米载药微球;透射电镜(TEM)和粒径分析仪(DLS)分析纳米微球的形貌、粒径分布情况;计算其包封率和载药量,并对其体外缓释效果和抗肿瘤性能进行研究。结果:明胶纳米微球的表面形态良好,分散均一,平均粒径65.1?2.1 nm,明胶纳米微球的包封率为23.5?1.9 %,载药量为69.7?0.5 %;明胶微球具有良好的缓释性能,Higuchi方程对微球的体外药物释放情况拟合度较高。四甲基偶氮唑蓝实验结果表明,5-FU/明胶微球对胃癌细胞(SGC7901)具有明显的抑制作用。结论:5-FU/明胶微球缓释性好,抗肿瘤活性显著,可作为抗癌药物的缓释制剂。  相似文献   

7.
目的制备可生物降解的具有降血脂作用的非诺贝特聚合物载药微球。方法通过复乳溶剂-挥发法制备非诺贝特缓释微球,表征其形态、粒径,并计算其载药量、包封率:用磷酸盐7.4的磷酸盐缓冲液在37℃溶解微球,并在不同的时间段在286 nm处测得其峰面积,绘制保准曲线,计算累计释放量。通过红外和差示热量扫描法显示其药物化学结构未发生改变。结果微球表面形貌光滑、完整,粒径分布均匀,平均粒径在1μm呈正态分布较好,其包封率在(89.46±0.54)%,载药量为(18.39±0.48)%,随着微球的降解,其缓释作用可以持续12天。结论通过复乳-溶剂挥发法制备的载非诺贝特PLGA缓释微球形态规整,分散性良好,并且能在12天内实现缓控释放。  相似文献   

8.
以胰岛素为目标药物,以丝素(SF)和羟丙基壳聚糖(HPCS)为包药材料,复凝聚法制备SF-HPCS载药微球。采用红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)、热重分析(TGA)等对载药微球的结构、外部形貌及热性能等进行了表征。结果表明,所制备的载药微球表面密实,平均粒径22.4μm,呈正态分布;载药微球对胰岛素的包埋率达73.6%,大于HPCS载药微球(64.3%)及壳聚糖(CS)载药微球(57.1%);SF-HPCS载药微球在人工胃液中4h内累计释药率为21.3%,在人工肠液中24h内累计释药率达81.2%,48h累计释药率为92.2%,释放过程平稳、缓慢。  相似文献   

9.
氨苄西林磁性明胶药物微球的制备及控制释放   总被引:1,自引:0,他引:1  
将药物封装入一个输送系统,以便在适当时间内持续控制药物释放.为此,利用明胶的生物相容性,选用难溶性氨苄西林(AMP)为药物模型,Fe3O4作为磁性内核,戊二醛作交联固化剂,液体石蜡为有机分散介质,采用反相悬液冷冻凝聚法(RPSCC)制备出了磁性AMP明胶核壳微球.用SEM、FT-IR和UV/Vis光谱等考察了药物微球的结构和外观形貌,以及药物在包封后的性质.结果表明磁性明胶药物微球的粒径小于20 μm.氨苄西林微球载药率(w/w)为7.1%,Fe3O4的含量为22.1%,微球包裹率为65.13%.7h内释放的药物占总含药量的72.3%.微球的缓释性能良好.  相似文献   

10.
洪雅真  朱利会 《化工进展》2018,37(3):1130-1136
以阿霉素(DOX)为小分子化学药物模型,采用吸附法对聚乳酸(poly-L-lactide,PLLA)多孔微球进行载药,采用场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRPD)及差示扫描量热(DSC)对DOX-PLLA复合微球的形貌粒径及空气动力学性能、药物及材料的理化性能、载药性能进行表征,并且研究了其载药量、包封率和体外释放性能。结果表明,不同载药量之间的PLLA多孔微球粒径并无显著差异,均具有良好的空气动力学性能,适合肺部可吸入给药的条件;化学组成未见明显改变,物理结构由结晶态变为无定形态;随载药量的增加(2.9%,4.0%,4.6%),包封率逐渐降低(56%,51%,44%);药物的体外释放与原料药相比具有一定的缓释效果,最长释放时间可达5天,表明DOX-PLLA复合微球有望作为缓释制剂用于肺部给药。  相似文献   

11.
Blend microspheres of chitosan (CS) with poly(vinyl alcohol) (PVA) were prepared as candidates for oral delivery system. CS/PVA microspheres containing salicylic acid (SA), as a model drug, were obtained using the coacervation‐phase separation method, induced by addition of a nonsolvent (sodium hydroxide solution) and then crosslinked with glutaraldehyde (GA) as a crosslinking agent. The microspheres were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy. Percentage entrapment efficiency, particle size, and equilibrium swelling degree of the microsphere formulations were determined. The results indicated that these parameters were changed by preparation conditions of the microspheres. Effects of variables such as CS/PVA ratio, pH, crosslinker concentration, and drug/polymer (d/p) ratio on the release of SA were studied at three different pH values (1.2, 6.8, and 7.4) at 37°C. It was observed that SA release from the microspheres increased with decreasing CS/PVA ratio and d/p ratio whereas it decreased with the increase in the extent of crosslinking. It may also be noted that drug release was much higher at pH 1.2 than that of at pH 6.8 and 7.4. The highest SA release percentage was obtained as 100% for the microspheres prepared with PVA/CS ratio of 1/2, d/p ratio of 1/2, exposure time to GA of 5 min, and concentration of GA 1.5% at the end of 6 h. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Microspheres are a potential delivery system for controlled and sustained drug release. Polymeric microspheres are commonly prepared by the solvent evaporation technique whereas waxy microspheres by the melt dispersion technique. The goal of this study was to prepare a surfactant (Span 60)—Ibuprofen microspheres using both techniques. Ibuprofen‐Span 60 microspheres were fabricated with different drug to polymer weight ratios of 3:1, 1:1 and 1:3 and characterized by particle size, in vitro dissolution, infrared spectroscopy, x‐ray diffraction and scanning electron microscopy. The actual drug content increased with increasing the concentration of anti‐aggregating agent (polyvinylpyrolidone). The actual drug content and drug encapsulation efficiency was markedly higher in case of microspheres prepared by a solvent evaporation technique compared to that prepared by a melt dispersion one using the same theoretical drug content. The microspheres were spherical with irregular surfaces. The in vitro release showed no burst effect and incomplete drug release. The rate and total drug released from the microspheres prepared by a solvent evaporation technique are higher than those prepared by using the melt dispersion technique. FTIR rolled out the chemical changes of the drug in Span 60 microspheres. The X‐ray diffraction pattern of the microspheres prepared by using a solvent evaporation technique showed a decrease in the drug crystallinity. The drug crystallinity in microspheres prepared by the melt dispersion technique decreased with increasing the theoretical drug content. The drug entrapment mechanism is responsible for the changes in drug physicochemical properties and in vitro release.  相似文献   

13.
以抗癌药物羟基喜树碱作为模型药物,可降解材料聚乳酸-羟基乙酸(PLGA)为药物负载体,采用溶剂-抗溶剂沉淀法制备聚乳酸-羟基乙酸/羟基喜树碱的载药纳米微球,考察不同溶剂-反溶剂体系对载药包封效果的影响。结果表明,以丙酮-水为溶剂体系制备的载药微球性能较好,形貌外观呈圆球形,球表面圆润光滑,粒度均一,分散效果良好,平均粒径为160 nm,载药微球包封率随着载药量的增加而减小,实测载药量为7.83%的PLGA载药微球,其载药包封率为87.68%,在28 d后溶出累计量约50%,可见以聚乳酸-羟基乙酸为载体制备的羟基喜树碱剂型,缓释作用良好。  相似文献   

14.
Three kinds of carboxymethyl chitosan/β-cyclodextrin microspheres loaded with theophylline were prepared by spray drying intended for pulmonary delivery. Mucociliotoxicity, permeation rate, and drug release characteristics of the product were investigated. The microspheres obtained by spray drying were found to be spherical with smooth or wrinkled surfaces. The mean particle size was between 3.39 and 6.06 µm. The microspheres demonstrated high product yield (43.7–50.2%), high drug loading (13.7–38.1%), and high encapsulation efficiency (86.9–92.8%). FT-IR indicated that there were interactions of theophylline with carboxymethyl chitosan matrix. Further studies on mucociliotoxicity and permeation confirmed that microspheres had better adaptability and high permeation rate. In vitro drug release from the microspheres was not related to the drug/polymer ratios.  相似文献   

15.
The aim of this study was to prepare docetaxel-loaded chitosan microspheres and to evaluate their in vitro and in vivo characteristics. Glutaraldehyde crosslinked microspheres were prepared using a water-in-oil emulsification method, and characterized in terms of the morphological examination, particle size distribution, encapsulation ratio, drug-loading coefficient and in vitro release. Pharmacokinetics and biodistribution studies were used to evaluate that microspheres have more advantage than the conventional formulations. The emulsion crosslinking method was simple to prepare microspheres and easy to scale up. The formed microspheres were spherical in shape, with a smooth surface and the size was uniform (9.6 ± 0.8 μm); the encapsulation efficiency and drug loading of prepared microspheres were 88.1% ± 3.5% and 18.7% ± 1.2%, respectively. In vitro release indicated that the DTX microspheres had a well-sustained release efficacy and in vivo studies showed that the microspheres were found to release the drug to a maximum extent in the target tissue (lung). The prepared microspheres were found to possess suitable physico-chemical properties and the particle size range. The sustained release of DTX from microspheres revealed its applicability as drug delivery system to minimize the exposure of healthy tissues while increasing the accumulation of therapeutic drug in target sites.  相似文献   

16.
Three kinds of carboxymethyl chitosan/β-cyclodextrin microspheres loaded with theophylline were prepared by spray drying intended for pulmonary delivery. Mucociliotoxicity, permeation rate, and drug release characteristics of the product were investigated. The microspheres obtained by spray drying were found to be spherical with smooth or wrinkled surfaces. The mean particle size was between 3.39 and 6.06 µm. The microspheres demonstrated high product yield (43.7-50.2%), high drug loading (13.7-38.1%), and high encapsulation efficiency (86.9-92.8%). FT-IR indicated that there were interactions of theophylline with carboxymethyl chitosan matrix. Further studies on mucociliotoxicity and permeation confirmed that microspheres had better adaptability and high permeation rate. In vitro drug release from the microspheres was not related to the drug/polymer ratios.  相似文献   

17.
Naturally available carbohydrate polymers such as methylcellulose (MC) and gelatin (Ge) have been widely studied in the previous literature for controlled release (CR) applications. In this study, methyl cellulose‐g‐acrylamide/gelatin (MC‐g‐AAm/Ge) microspheres were prepared by water‐in‐oil (W/O) emulsion method and crosslinked with glutaraldehyde to encapsulate with nifedipine (NFD), an antihypertensive drug. The microspheres prepared were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and laser particle size analyzer. DSC thermograms of NFD‐loaded AAm‐MC/Gel microspheres confirmed the molecular level distribution of NFD in the matrix. SEM indicated the formation of spherical particles. Swelling experiments supported the drug diffusion characteristics and release data of the matrices. Cumulative release data were analyzed using an empirical equation to understand the nature of transport of drug through the matrices. Controlled release characteristics of the matrices for NFD were investigated in pH 7.4 media. Drug was released in a controlled manner up to 12 h. Particle size and size distribution of the microspheres as studied by laser light diffraction particle size analyzer indicated their sizes to be around 120 μm. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 ± 1.32 µm. The drug loading and entrapment efficiency of the formulation were 17.78% ± 2.31% and 81.6% ± 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life (t1/2), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号