首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
制备以酞菁铜CuPc为空穴传输层,有机染料-二氢吲哚D102(C37H30N2O3S2)为敏化染料的染料敏化异质结电池DSH(Dye-sensitized heterojunction solar cells)。研究不同厚度CuPc空穴传输层:40 nm、80 nm和120 nm的电池的性能,得到在其厚度为40 nm时,电池的Jsc=248.3μA/cm2,Voc=0.61V,=0.042%(80 mW/cm2氙灯测试)。对比采用I3-/I-氧化-还原对为液态电解质的染料敏化TiO2纳米晶太阳电池,分析以CuPc为空穴传输层的DSH电池效率较低的原因。  相似文献   

2.
制备了基于CuPc…C60混合层异质结有机光伏器件,将其与CuPc-C60双层结构光伏器件进行对比研究。结果表明混合层结构器件性能得到改善,其开路电压、短路电流密度、填充因子和光电转换效率都有提高,分别从CuPc-C60双层结构器件的0.39V、1.92mA/cm2、0.36%、0.48依次提高到CuPc…C60混合层结构器件的0.48V、2.21mA/cm2、0.54%、0.51。根据整数电荷转移模型来分析光伏器件D/A界面及有机材料-ITO衬底界面特性,认为混合层异质结有机光伏器件给体材料HOMO与受体材料LUMO的能级差增加使得器件开路电压提高。混合层异质结有机光伏器件D/A界面面积增加和给体材料HOMO与受体材料LUMO的能级差增加都提高了激子的分离效率,所以器件的短路电流密度增加。  相似文献   

3.
正置倒置异质结有机小分子太阳能电池   总被引:2,自引:2,他引:0  
以MoO3为阳极修饰层,以Rubrene/C60为活性层,制备了正置和倒置异质结有机小分子太阳能电池。实验结果表明倒置器件的开路电压Voc、短路电流密度Jsc、填充因子FF和功率转换效率η比正置结构的器件分别提高了34%、20%、25%和102%。当插入BCP阴极缓冲层后,阻挡了热的Al原子对C60层的破坏,对倒置器件的性能没有明显的影响,但却显著改善了正置器件的性能,并分析了MoO3和BCP对倒置和正置器件的作用。  相似文献   

4.
实验制备了ITO/V2O5/Rubrene/C70:Rubrene/C70/BCP/Al的PIN结构有机太阳能电池(OSC),其中Rubrene、Rubrene:C70和C70分别作为P、I和N层。通过改变I层厚度,研究了I层对OSC性能的影响及作用机理。实验显示,I层厚为5nm时器件的功率转换效率η达到最大值为1.580%,同时获得了较大的短路电流密度Jsc为4.365mA·cm-2;相对PN结构器件,功率转化效率η短路电流密度Jsc和填充因子FF分别提高了40.3%、29.7%和8.2%。我们认为,I层中激子分离效率的提高导致了器件性能的改善。  相似文献   

5.
热处理对Rubrene/C70有机太阳能电池性能的改善   总被引:1,自引:1,他引:0  
制备了ITO/MoO3(6nm)/Rubrene(30nm)/C70(30nm)/BCP(6nm)/Al(150nm)的PN结构和ITO/MoO3(5nm)/Rubrene(25nm)/Rubrene:C70(5nm)/C70(25nm)/BCP(6nm)/Al(150nm)的PIN结构有机太阳能电池(OSCs)。通过对两种器件进行热处理,研究热处理对OSCs性能的影响。实验表明,在热处理后,PN结构和PIN结构器件的短路电流密度分别达到了3.526mA·cm-2和5.413mA·cm-2,功率转换效率分别达到了1.43%和2.09%。与未经过热处理的器件相比,PN结构和PIN结构器件的短路电流密度、填充因子、功率转换效率分别提高了19.0%、7.1%、28.3%和4.8%、20%、24.1%。可见,热处理可以提高Rubrene/C70OSCs的性能。  相似文献   

6.
研究了叠层结构的本体异质结有机太阳电池,下层电池由共轭聚合物(MEH-PPV)作为光敏层,上层电池由共轭聚合物(1VIEDPPV)和ZnO纳米颗粒(50nm)组成光敏层。器件结构为ITO/PEDOT:PSS/MEHPPV/Ag/MEH-PPV:ZnO/Al。与单层有机太阳电池(ITO/PEDOT:PSS/MEH-PPV/Al)相比,叠层结构的开路电压Voc是单层电池的3.7倍,短路电流Jsc是单层电池的1.6倍。  相似文献   

7.
Silver nanoprisms (AgNPs) affect the performance of organic solar cells (OSCs) in different ways depending on their positions in the device. To investigate this issue, we incorporate AgNPs in different positions of OSCs and compare their performance. The power conversion efficiency (PCE) is improved by 23.60% to 3.98% when the AgNPs are in- corporated in front of the active layer. On the other hand, when AgNPs are incorporated in the back of the active layer, the short-circuit current density (Jsc) is improved by 17.44% to 10.84 mA/cm2. However, if AgNPs are incorporated in the active layer, both open-circuit voltage (Voc) and Jsc are decreased. We discuss the position effect on the device performance, clarify the absorption shadow and exciton recombination caused by AgNPs, and finally indicate that the optimal position ofplasmonic AgNPs is in front of the active layer.  相似文献   

8.
采用AFORS-HET软件对TCO/nc-SiC∶H(p)/nc-Si∶H(i)/c-Si(n)/nc-Si∶H(n+)/Al异质结太阳电池进行了模拟,分别讨论了窗口层、本征层、界面态和背场对太阳电池性能参数的影响。模拟结果表明,厚度尽可能薄的p层能减少入射光及光生载流子在窗口层的损失,对应最佳的窗口层禁带宽度为1.95eV。本征层的引入主要是钝化异质结界面,降低界面态的影响,提高电池转换效率。合理的背场设计可提高电池的转换效率1.7个百分点左右,此时最佳的异质结太阳电池的性能参数为:开路电压Voc=696.1mV,短路电流密度Jsc=38.49mA/cm^2,填充因子FF=83.52%,转换效率η=22.38%。  相似文献   

9.
Bathocuproine作为缓冲层改善Rubrene/C70太阳能电池的性能   总被引:5,自引:5,他引:0  
制备了结构为ITO/Rubrene/C70/BCP/Al的双层有机太阳能电池(OSCs),通过优化缓冲层BCP的厚度研究了BCP对OSCs性能的影响及其作用机理。实验发现,BCP厚为6nm时,器件的效率最高达到1.78%,同时获得了较大的开路电压0.901V。相对于没有缓冲层,器件的效率、短路电流、开路电压和填充因子分别提高了432.9%、74.8%、95.4%和55.5%。  相似文献   

10.
A model of universal single layer organic solar cells in metal-insulator-metal (MIM) representation involving field-depen- dent carrier mobility is set up. The current-voltage characteristics as well as the distribution of electron density, hole density and recombination rate on a set of parameters are simulated. Subsequently, the dependences of the short-circuit current density (Jsc) and open-circuit voltage (Voc) on the electron and hole zero-field mobility, excitation generation rate, energy gap, as well as electron-hole pair distance in an excitation are investigated. It is demonstrated that the enhancement of either the electron mobility or the hole mobility can contribute to the increase of Jsc in the devices. The increase of the hole mobility can lead to the improvement of both Jsc and Voc, and the simultaneous increase of the electron mobility and hole mobility will greatly elevate Jsc but maintain a steady Voc. Additionally, all the increases of the excitation generation rate, energy gap and electron-hole pair distance are beneficial to both the remarkable increases of Jsc and Voc of the devices.  相似文献   

11.
Solution prepared hybrid solar cells show promising low cost technology for electricity generation from sun light, although their power conversion efficiency has to be improved. One of the approaches is to increase the absorbance or charge carrier mobility of organic semiconductors. In this work, pristine single walled carbon nanotubes (SWCNT) were added into poly(3-hexylthiophene) (P3HT) solution to form P3HT:SWCNT composite films with different weight percent (wt%) of SWCNT. It is observed that optical absorbance spectra as well as the morphology of the composite films were modified by the addition of SWCNTs. This phenomenon could be explained by the π-π interaction between the conjugated polymer and carbon nanotubes. Most importantly, the electrical conductivities of the composite films increased with the SWCNT wt%. When these films were used as hole conductor layers in inverted planar hybrid solar cell, with CdS thin films as electron acceptor layers, the fill factor (FF) and open-circuit voltage (Voc) of the corresponding cells were decreased with the increase of the wt% of SWCNT. However, the short-circuit current density (Jsc) and the power conversion efficiency (PCE) showed a maximum value at about 0.4 wt% of SWCNT in P3HT. The transient photovoltage measurements (TPV) revealed that the presence of SWNCT promoted the charge recombination process at P3HT/CdS interface, and as a result, reduced the Voc. The photovoltaic performance of the hybrid solar cells could be optimized by choosing an adequate weight percentage of SWCNT in P3HT to balance the charge carrier transport and charge recombination processes at the donor-acceptor interface.  相似文献   

12.
Organic solar cells (OSCs) have achieved rapid advance due to the continuous development of high-performance key materials.Recently,the power conversion efficiencies (PCEs)of OSCs under 1 Sun condition (AM 1.5 G,100 mW/cm2) are striving toward 19%[1-5].The PCE improvement benefits from the largely enhanced short-circuit current density (Jsc) and fill factor (FF).However,these cells show relatively low open-circuit voltage (Voc) around 0.8-0.9 V.The rise of Internet of Things (loT) industry has promoted the indoor application of solar cells.OSCs can afford higher PCEs under various indoor light as compared to 1 Sun condition[6,7],but they present lower Voc[8].Fabricating tandem devices is an effective strategy to boost the performance of OSCs.Sub-cells with syn-chronously high Voc,Jsc and FF are highly desired in tandem cells,while these sub-cells are still limited[9].Thus,improving Voc without sacrificing Jsc and FF is an urgent mission in OSCs.  相似文献   

13.
The processes that generate current in organic photovoltaics are highly dependent on the micro‐ and nano‐structure in the semiconductor layers, especially at the donor‐acceptor interface. Elucidating film properties throughout the thickness of the devices is therefore key to their further development. Here, a methodology is developed to gain unprecedented insights into the structure and composition of the molecular layers within the depth of device structure using high resolution transmission electron microscopy (HRTEM). The technique was applied to three archetypical solar cell configurations consisting of copper phthalocyanine (CuPc) and C60, which have been cross‐sectioned using a focused ion beam method optimized to minimize sample damage. The HRTEM images exhibit lattice fringes in both CuPc and C60, confirming the crystallinity and texture of both materials, and offering novel insight into the growth of C60 onto molecular materials. The donor‐acceptor interface morphology is further studied using scanning transmission electron microscopy (STEM) in combination with energy dispersive X‐ray (EDX) spectroscopy, extending the scope of our methodology to amorphous heterostructures.  相似文献   

14.
We report the enhanced performance of organic solar cells(OSCs) based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester(PCBM) blend by using dihydroxybenzene as additive in the active layer.The effect of the content of the additives on electrical characteristics of the device is studied.The device with 0.2 wt% dihydroxybenzene additive achieves the best power conversion efficiency(PCE) of 4.58% with Jsc of 12.5 mA/cm2,Voc of 0.65 V,and FF of 66.6% under simulated solar illumination of AM 1.5G(100 mW/cm2),compared with the control device with PCE of 3.39%(35% improvement compared with the control device).The XRD measurement reveals that the addition of additives induces the crystallization of P3HT and establishes good inter-network to increase the contact area of donor and acceptor,and then helps charge to be effectively transferred to the electrode to reduce the chance of recombination.All evidences indicate that the dihydroxybenzene is likely to be a promising new type additive that can enhance the performance of organic bulk heterojunction solar cells.  相似文献   

15.
采用真空蒸镀的方法,制备了ZnPc(40 nm)/C60(20 nm)结构的电池,重点研究了不同光强测试条件下,ZnPc/C60电池光伏性能的变化情况。发现开路电压(Voc)和填充因子(FF)随光强呈现对数式的变化趋势,前者逐渐上升而后者则下降,短路电流与光强的关系为Jsc∝E1.13,电池的功率转换效率(η)随光强稳步上升。拟合计算得到电池的理想因子n=1.93;100 mW/cm2辐照条件下,Rs=25Ω,Rsh=116Ω;分析认为,器件的准费密能级分裂程度随光强增强而增大是导致开路电压增大的原因;而Jsc-E强于正比关系则是C60产生激子对电流有辅助贡献的结果。  相似文献   

16.
Charge transfer processes between donor–acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface‐sensitive microscopy, synchrotron radiation spectroscopy, and state‐of‐the‐art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule–substrate interactions, hybridization, and charge transfer in model donor–acceptor assemblies at metal‐organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor–acceptor assemblies. In particular, studying the self‐assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper‐phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate.  相似文献   

17.
We demonstrate a planar organic solar cell with a four-layer cascade architecture that exhibits an open-circuit voltage (Voc) greater than the offset in energy between the highest occupied molecular orbital (HOMO) of the outermost donor and the lowest unoccupied molecular orbital (LUMO) of the outermost acceptor. The device consists of a subphthalocyanine (SubPc)/fullerene (C60) heterojunction that is modified by inserting one or two additional donor layers between SubPc and the anode. We find that two-, three- and four-layer structures yield similar Voc (1.0 V, 0.91 V and 0.94 V, respectively), even though the outermost HOMO-LUMO offset decreases from 1.4 eV to 1.10 eV, and to 0.9 eV, respectively. Analysis of the turn-on voltage in dark provides further evidence that open-circuit voltage is not limited by the outermost HOMO-LUMO offset.  相似文献   

18.
We report on the optical and electrochemical characterization (experimental and theoretical) of two donor substituted benzothiadiazole with different cyano based acceptor π-linkers, tetracyanobutadiene (TCBD) SM1 and dicyanoquinomethane (DCNQ) SM2, and explore them as the donor component for solution processed bulk heterojunction organic solar cells, along with PC71BM as the electron acceptor. The solution bulk heterojunction (BHJ) solar cells based on dichloromethane (DCM) processed active layer with SM1 and SM2 as donor and PC71BM as acceptor achieve power conversion efficiency (PCE) of 2.76% and 3.61%, respectively. The solar cells based on these two small molecules exhibit good Voc, which is attributed to their deep HOMO energy level. The higher PCE of the device based on SM2 compared to SM1 is attributed to the its small bandgap, broader absorption profile and enhanced hole mobility. Additionally, the PCE of the SM2:PC71BM based solar cells processed with 1-chloronaphthalene CN (3 v%)/DCM is further improved reaching upto 4.86%. This increase in PCE has been attributed to the improved nanoscale morphology and more balanced charge transport in the device, due to the solvent additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号