首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自湿润流体是一种具有特殊的表面张力特性的二元流体,了解其蒸发传热特性对于揭示其强化传热机理十分重要.为了探究添加自湿润流体液滴的蒸发特性,采用液滴形状分析仪(DSA100)研究了不同温度(30、40、50、60℃)下铜底板上去离子水、正丁醇水溶液(质量分数为0.5%)液滴的蒸发特性.结果 表明:加入少量正丁醇溶液并不影...  相似文献   

2.
Water management is one of the critical issues in proton exchange membrane fuel cells, and proper water management requires effective removal of liquid water generated in the cathode catalyst layer, typically in the form of droplets through cathode gas stream in the cathode flow channel. It has been reported that a hydrophilic channel sidewall with a hydrophobic membrane electrode assembly (MEA) surface would have less chance for water accumulation on the MEA surface. Therefore, a comprehensive study on the effect of surface wettability properties on water droplet movement in flow channels has been conducted numerically. In this study, the water droplet movements in a straight flow channel with a wide range of hydrophilic surface properties and effects of inlet air velocities are analyzed by using three‐dimensional computational fluid dynamics method coupled with the volume‐of‐fluid (VOF) method for liquid–gas interface tracking. The results show that the water droplet movement is greatly affected by the channel surface wettability and air flow conditions. With low contact angle, droplet motion is slow due to more liquid–wall contact area. With high air flow velocities, increasing the contact angle of the channel surface results in faster liquid water removal due to lesser liquid–wall contact area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a two-fluid (TF) model is developed for two-phase flows in proton exchange membrane fuel cells (PEMFCs). The drag force and lift force between gas and liquid phase are considered in N-S equations. In addition, a simplified model is introduced to obtain the liquid water droplet detachment diameter on the gas diffusion layer (GDL)/channel interface which involves the properties of the GDL/channel interface (contact angle and surface tension). The TF model and the simplified model for the prediction of water droplet detachment diameter on GDL/channel interface are validated by the comparison between the experimental data and the model results, respectively. The effect of the properties of GDL/channel interface (contact angle and surface tension) on two-phase behavior in PEMFCs is investigated, The results show that a high contact angle and a low surface tension are advantageous for liquid water removal in the gas channel and the GDL even though a low surface tension will lead to a low capillary force in the GDL.  相似文献   

4.
This theoretical and experimental study was conducted to investigate the critical condition at which a liquid droplet starts to move on a rotating disk. The critical rotational speed ω was theoretically calculated based on the force balance between the surface tension and the centrifugal force, where ω was experimentally measured for each combination between three kinds of test plates and test liquids. The movements of droplets were judged from the careful observation of infinitesimal motion of the three‐phase contact line. The calculated rotational speeds agreed well with measured ones for arbitrary contact angle when the droplets were set on the plate. The three‐dimensional surface profiles of droplets were calculated from the approximate Laplace equation in which the contact line was assumed as the combination of two ellipses with different ratio of measure to minor axis. The measured profiles on the rotating disk were approximated well by the method proposed in this study. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20276  相似文献   

5.
The present study aims to investigate Marangoni‐forced convective nanofluid flow over an electromagnetic actuator (Riga plate). A first‐order homogeneous chemical reaction is considered. The thermocapillary and solutocapillary Marangoni effect developed by the surface tension is considered as a driving force for the nanofluid. In addition, Grinberg‐term is accounted to involve the impact of Lorentz force impinged by the actuator in the model. A set of nonlinear ordinary differential equations is obtained via suitable transformations for a nonsimilar analysis. Series solutions are achieved through homotopy to discuss the behavior of the velocity field, thermal distribution, and concentration of the nanoparticles graphically. The variation in Nusselt and Sherwood numbers is discussed. The outcomes declared that the flow parallel to the surface of the plate is assisted by the Lorentz forces generated by electromagnetic bars of the actuator resulting in an enhancement in the fluid motion. Furthermore, the stronger Marangoni effect resulted in the declining trend of the temperature profile. The concentration of nanoparticles near the surface reduced intensive chemical reaction inside the nanofluid.  相似文献   

6.
ABSTRACT

The heat transfer characteristics of liquid droplets are influenced by the hydrophobicity of the surfaces. Fluid properties and surface energy play important roles in heat transfer assessment. In the present study, the influence of the contact angle on the flow field developed inside a nanofluid droplet consisting of a mixture of water and carbon nanotubes (CNT) is investigated. Flow field and heat transfer characteristics are simulated numerically in line with the experimental conditions. It is found that the flow velocity predicted numerically is in good agreement with the experimental data. Nusselt and Bond numbers increase at large contact angles and Marangoni force dominates over buoyancy force.  相似文献   

7.
This article studies the three dimensional transient weld pool dynamics and the influence of groove angle on welding of low carbon structural steel plates using the ForceArc® process. The deformation of the weld bead is also calculated with an accurate coupling of the heat transfer with fluid flow through continuity, momentum and the energy equations combined with the effect of droplet impingement, gravity, electromagnetic force, buoyancy, drag forces and surface tension force (Marangoni effect). Different angles of V groove are employed under the same welding parameters and their influence on the weld pool behavior and weld bead geometry is calculated and analyzed, which is needed for subsequent calculations of residual stress and distortion of the workpiece.Such a simulation is an effective way to study welding processes because the influence of all welding parameters can be analyzed separately with respect to heat transfer, weld pool dynamic, and microstructure of the weld. Good agreement is found between the predicted and experimentally determined weld bead cross-section and temperature cycles. It is found that the main flow pattern is more or less the same although the groove angle increases, but it will evoke larger amount of fluid to flow downward to get deeper penetration.  相似文献   

8.
The spontaneous movement of condensate drops by application of a bulk temperature gradient on the heat transfer surface in Marangoni condensation was investigated, with consideration for applications to heat transfer devices. In the Marangoni condensation process, the removal of condensate on the heat transfer surface is important to maintain good heat transfer. A heat transfer device, in which the liquid movement occurs without external forces such as gravity and vapor shear force, may be useful in various applications. As a result of experiments using a water–ethanol vapor mixture, the movement of droplets from the low‐temperature side to high‐temperature side could be observed on a horizontally arranged heat transfer surface. The relation between the velocity of drop movement and the gradient of surface tension was studied for different concentrations. Furthermore, the effect of inclination of the condensing surface was examined. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(7): 387–397, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20218  相似文献   

9.
在气液两相流VOF(volume of fluid,VOF)模型的基础上耦合CSF(continuum surface force,CSF)表面张力模型,建立了高温平板上的铺展液滴与高温空气中悬浮液滴蒸发过程中内部非稳态流动模型,对液滴蒸发过程中内部非稳态流动进行了研究。基于相变理论,采用用户自定义函数将流体相变模型加入非稳态流动模型中进行耦合计算,获得了高温平板上的铺展液滴与高温空气中悬浮液滴蒸发过程中的内部流动及变化过程。液滴蒸发过程中非稳态内部流动由液滴表面的温度梯度引发,Marangoni流动在液滴内部形成的时间非常短,流体从液滴表面高温区域流向低温区域。计算结果表明:高温平板上随着液滴蒸发的进行,液滴内部一直保持两个对称的涡流,Marangoni流动比较稳定;高温空气环境中随着液滴蒸发的进行,液滴内部四个涡流逐渐转变成两个对称的涡流;液滴内部温度分布因Marangoni流动加强传热而变得均匀,同时由于温度分布变得均匀,Marangoni流动被削弱。  相似文献   

10.
The stability of a thin layer of viscoelastic fluid flowing through a porous medium down a non‐uniformly heated inclined plane with a constant temperature gradient along the plane is considered. The film flow system is influenced by gravity, mean surface tension, thermocapillary forces, viscoelastic forces, porosity, and permeability of porous medium. We seek a solution of the stability problem in a series in small wave numbers, and the obtained results, when the plane is heated in the downstream direction, show that the Marangoni, Galileo, and Biot numbers, porosity, and permeability of the porous medium have dual roles in the stability of the flow system, while the viscoelastic parameter and angle of inclination have stabilizing effects, and the Prandtl number has a destabilizing effect. The effects of these physical parameters are also discussed in the case when the plane is cooled in the downstream direction, and we found that their effects are opposite to those of the previous case. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21105  相似文献   

11.
ABSTRACT

Contact angle dynamics of droplets deposited on a structured surface were studied in this work and the effects of substrate microstructure and temperature were investigated. Microstructures consisting of uniformly-sized, cubic micropillars with varying pillar spacings were constructed by microfabrication. Droplets (of the order of tens of microlitres in volume) were deposited on these surfaces and dynamic contact angles were observed using various techniques. Advancing and receding contact angles were measured using tilting of the surfaces or by injection and aspiration of fluid from a horizontal droplet by syringe. Droplets on these surfaces appeared to be mainly in the Wenzel state. Contact angle hysteresis was obtained as a function of pillar spacing or, equivalently, surface roughness. Depinning force was deduced and a linear dependence on maximal three phase contact line was found. The techniques of tilting the surface on which the droplet was deposited and uniformly increasing and reducing the volume of the droplet via the syringe both gave the same contact angle hysteresis for a given micropillar spacing. The effect of temperature was then assessed using a heated tilting plate. Contact angle hysteresis was found to increase with temperature. Further work to elucidate mechanisms governing this dependence will be undertaken.  相似文献   

12.
In the present paper, we have discussed the thermosolutal Marangoni force acting on the electrically conducting Casson fluid flow over a permeable horizontal stretching surface. It is presumed that the condition at the interfaces is influenced by the surface tension, which is proportional to the temperature and concentration profiles. At the interface, both concentration and temperature are heated in such a way that they are quadratic functions in x . Furthermore, we have introduced the magnetic field in the transverse direction of the fluid flow along with heat generation/absorption, thermal radiation, viscous dissipation, and first‐order chemical effect with heat and mass flux into the present system. Similarity transformations have been used to convert the system of the nonlinear partial differential equations into a system of nonlinear ordinary differential equations (ODEs). The reduced ODEs are then solved using the MATLAB program bvp4c, which is based on the fourth‐order Runge‐Kutta and shooting method. The impact of various pertinent flow parameters on the flow field, temperature, and species concentration has been studied through graphs. To know the characteristics of shear stress, heat and mass rate near the boundary, numerical values of them are also calculated and given in the tabular form. The results show that the momentum boundary layer's thickness is getting thicker with an increase in solutal surface tension ratio, while its opposite trends have been observed in the thermal boundary layer region, this is due to the Marangoni effect. This Marangoni effect is very much important in the field of melting metals, crystal growth, welding, and electron beam.  相似文献   

13.
Onset of Marangoni instability of a two-component evaporating droplet   总被引:1,自引:0,他引:1  
The temperature and solute concentration reductions across a thin boundary layer near the free surface of an evaporating droplet may induce cellular flow motion in the droplet because of Marangoni instability. The present study is aimed at investigating theoretically the onset of Marangoni instability due to the evaporation of a two-component evaporating droplet.

With the quasi-steady approximation which means that the surrounding gas motion is asymptotically steady, the size change of the droplet is negligible, and the temperature and concentration distributions of the droplet are temporarily frozen at each specified instant of interest, the onset condition for Marangoni instability is obtained through the linear stability analysis.

By assuming the surface tension is a monotonically decreasing function of both temperature and concentration of the higher-volatility substance, the thermocapillary and diffuso-capillary effects augment each other. Therefore, the theoretical analysis predicts a linear relation, with a negative slope, between the onset thermal Marangoni number, MaT, and the onset solute Marangoni number, MaS. Moreover, when liquid Lewis number Lel>1, the critical wave number, lc, may possess different values depending on the variation of the thermocapillary effect and diffuso-capillary effect. In addition, Lel has a stronger effect on the critical solute Marangoni number MaS,C, than on the critical thermal Marangoni number MaT,C. That is, as Lel decreases, MaT,C decreases mildly while MaS,C increases drastically.  相似文献   


14.
With the introduction of an additional interfacial tension (or hysteresis tension) to describe the effect of the surficial roughness on the liquid‐solid contact angle hysteresis, both contact angle and its hysteresis were derived from mechanical equilibrium and were perfectly consistent with thermodynamics. This unifies the mechanical and thermodynamic performance, or removes the contradiction existing in classical mechanical and thermodynamic understanding. By combining the sessile drop method with CCD camera and the digital imaging techniques, the contact angle hysteresis of distilled water, diethylene glycol, and 1‐butyl alcohol on stainless steel surfaces was measured. The results of the experiments agree very well with the predictions of the hysteresis tension model. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(4): 201–210, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20013  相似文献   

15.
The convective flow inside polymer solution droplets drying on a lyophobic substrate is numerically studied. The evaporating droplet is presumed as a hemisphere shrinking with time at the constant contact angle. The thermal and solutal effects are simultaneously considered in the computation. The thermal Marangoni convection is induced due to the quick thermal diffusion, and this convection transports the solute resulting in the solutal Marangoni flow. The solutal dependence corresponds to our previous experimental work, but the flow pattern does not. Consideration of the pseudo evaporation rate distribution depending on the contact angle yields to the flow pattern correspondence.  相似文献   

16.
The effect of surface wettability on evaporation of a water drop has been examined experimentally using surfaces with various contact angles. To greatly change the surface wettability, TiO2 superhydrophilicity, plasma irradiation, and super‐water‐repellent surface are adopted as the heating surface. The range in contact angle achieved by these methods was between 0° and 170°. The relationship between the contact angle and the wetting limit temperature was obtained and it was found that the lifetime of a water drop dramatically decreases with contact angle in the lower temperature region, and that the wetting limit temperature increases with the contact angle. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(7): 513–526, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20128  相似文献   

17.
Umesh  N. K. Singh 《亚洲传热研究》2023,52(2):1457-1473
A numerical investigation is conducted to study the air entrapment phenomenon when two different liquids such as water and diesel droplet are impacted on the solid surface. The beginning of the air entrapment process was observed during droplet impact on a solid substrate forming a dimple underneath the droplet. The air film thus trapped underneath the droplet started evolving into the air bubble. This journey of evolution mainly comprises phases like an inertial retraction of air film, contraction, and pinch-off of the secondary droplet inside the air bubble for a water droplet impact case. The volume of fluid approach has been utilized to track the progress of air film evolution. The influence of surface wettability has been observed on the evolution of air film into the air bubble by taking four different values of contact angle pertaining to the hydrophilic surface (θ = 10° and 35°) and hydrophobic surface (θ = 90° and θ = 120°). The air bubble was found to get detached from the substrate for the hydrophilic surface (θ = 35°) and observed to remain attached to the substrate for the hydrophobic surface. The variation of pressure underneath the droplet was also investigated as the droplet reaches the substrate. The effect of surface tension has been studied on the evolution of air film by impacting the diesel droplet on the same substrate keeping the same wettability condition (θ = 35°). The lower surface tension of the diesel droplet as compared to the water droplet delayed the process of air film evolution and consequently decreases the retraction speed of air film. Also, the air bubble remains attached to the surface. Furthermore, the air bubble detaches from the surface for an even higher wettability condition (θ = 10°). Thus surface wettability and surface tension become two important factors governing the development of entrapped air film and bubble elimination in many practical applications.  相似文献   

18.
A level-set method is presented for computation of microdroplet evaporation including not only the effects of heat and mass transfer, phase change and contact line dynamics but also the Marangoni effect, which is a key parameter affecting the internal flow of the droplet and the particle deposition pattern. A sharp-interface formulation of the Marangoni force is derived and tested for two-phase Marangoni convection in a cavity. The computed results show good convergence in both the liquid and gas regions and are in excellent agreement with the analytical solutions. The level-set formulation is applied to microdroplet evaporation on a solid surface to investigate the Marangoni effect.  相似文献   

19.
This article studies the transient weld pool dynamics under the periodical impingement of filler droplets that carry mass, momentum, thermal energy, and species in a moving 3D gas metal arc welding. The complicated transport phenomena in the weld pool are caused by the combined effect of droplet impingement, gravity, electromagnetic force, plasma arc force, and surface tension force (Marangoni effect). The weld pool shape and the distributions of temperature, velocity, and species in the weld pool are calculated as a function of time. The phenomena of “open and close-up” for a crater in the weld pool and the corresponding weld pool dynamics are analyzed. The commonly observed ripples at the surface of a solidified weld bead are, for the first time, predicted by the present model. Detailed mechanisms leading to the formation of ripples are discussed.  相似文献   

20.
用多相多组分格子Boltzmann模型中的伪势模型对单通道中壁面上液滴驱替进行模拟。主要目的是研究液滴与其外部流体分子质量比对驱替过程及临界邦德数的影响。首先用伪势模型模拟静态气泡,模拟结果与Young-Laplace定律吻合验证了模型的正确性。然后考虑流体与壁面作用力,对壁面上静态液滴润湿性进行模拟,得到参数g0w与接触角的关系。最后取g0w=0.04即液滴为接触角110°的非润湿性流体,加入质量力,考察液滴与其外部流体分子质量比不同时液滴驱替情况。模拟结果表明,当分子质量比增大时,液滴的界面张力减小,使液滴脱落的临界质量力减小,而临界邦德数增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号