首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental system investigating condensation heat transfer of wet flue gas was set up, and the heat transfer performance of vapor‐gas mixture with vapor condensation was discussed. The experimental results of laminar flow in a plastic longitudinal spiral plate heat exchanger were obtained and are in good agreement with the modified classical film model. It is shown that the plastic air preheater can avoid acid corrosion in the low‐temperature field for the boiler using fuel containing sulfur and recover latent heat of the water vapor of the wet flue gas. Also some SO2 was scrubbed during the vapor condensing process in the heat exchanger. © 2001 Scripta Technica, Heat Trans Asian Res, 30(7): 571–580, 2001  相似文献   

2.
Waste heat recovery (WHR) is crucial to the efficiency improvement of natural gas‐fired boiler systems. Two‐stage WHR systems based on the natural gas‐fired boiler were analyzed from the viewpoints of thermal efficiency and heat transfer irreversibility. An overall entransy dissipation‐based thermal resistance was derived to evaluate the irreversibility of WHR, including the entransy dissipations during condensation and in absorption heat pump (AHP). Compared with the basic WHR system, the two‐stage WHR systems have higher boiler efficiency and less irreversibility. The air‐humidified system recycles both the heat and vapor in flue gas, while the unutilized latent heat in the recovered vapor causes the boiler to be less efficient than the AHP system. Investigation on heat exchanger effectiveness of two‐stage WHR systems illustrated: in the two‐stage WHR system with air humidification, the increasing effectiveness of both heat exchangers could effectively increase boiler efficiency and reduce heat transfer irreversibility. In the two‐stage WHR system with AHP, boiler efficiency has a local optimum when the dew point occurs near the outlet of the first heat exchanger; increasing the second heat exchanger effectiveness is more efficient in improving boiler efficiency. The present work may provide available references and guidance for the design and optimization of the two‐stage WHR systems.  相似文献   

3.
脱硝尿素热解制氨系统一般通过电加热器提供所需的高温热解空气热量,采用锅炉烟道内布置烟气换热器,可以有效提供高温热解空气加热所需热量,降低电加热器运行功率从而节省高品质电能.通过对某350 MW机组实际运行数据分析,总结锅炉内置烟气换热器尿素热解系统的运行特点,提出烟气换热器优化设计方案,保证尿素热解制氨系统的运行经济性...  相似文献   

4.
宁玉琴  孙少鹏  田鑫  蒋文  向阳 《节能技术》2013,(6):544-546,560
为解决某300 MW火力发电厂循环流化床锅炉排烟温度偏高的问题,提出将传统低压省煤器与卧式相变换热器相结合的新型烟气余热回收技术.该技术不仅能预防换热设备酸腐蚀,还能实现电厂烟气深度余热回收节能.给出了系统的具体布置方案和设计参数,分析了系统对凝汽器真空以及引风机性能的影响,并应用等效焓降理论及节能定量分析理论进行理论计算.计算结果表明,采用该系统后,锅炉排烟温度降低45℃,降低标准煤耗近3.5 g/(kW·h).  相似文献   

5.
在回收燃气锅炉烟气余热时,采用特殊管型强化传热以吸收烟气中大量的水蒸气所携带的显热和潜热,可以降低锅炉的排烟温度,提高锅炉的热效率。对滴型管和圆管烟气侧传热特性进行数值计算,通过对计算结果的分析比较,探讨了影响传热的因素,得出滴型管的传热特性优于圆管的结论,为特殊管型在冷凝换热器中的应用提供参考。  相似文献   

6.
The exit flue gas temperature of a conventional gas fired boiler is usually high and a great amount of heat energy is lost to the environment. If both sensible heat and latent heat can be recovered by adding a condensing heat exchanger, the efficiency of the boiler can be increased by as much as 10%. In this paper, based on combustion and heat transfer calculations, the recoverable heat and the efficiency improvement potential of different heat recovery schemes at various exit flue gas temperatures are presented by performing design calculations. The payback period method has been used to analyze the feasibility of retrofitting a conventional gas fired boiler into a condensing boiler in a heating system in detail. The results show that the most economical exit flue gas temperature is 40–55 °C when a conventional natural gas fired boiler is retrofitted into a condensing boiler simply by adding a condensing heat exchanger. It is feasible to use the return water of a heating system as the cooling medium of the condensing heat exchanger because the return temperature varies with the ambient temperature and is lower than the dew point of the water vapor in the flue gas in most periods of a heating season in some regions, which has been verified by retrofitted case.  相似文献   

7.
The excessively increasing environmental concerns along with reducing fossil fuel resources introduce the trend of increasing the efficiency of boiler via implementing waste heat recovery. In the present study, the potential of latent heat recovery is investigated in the middle‐size boiler exhaust flue gas using the shell and corrugated tube heat exchanger. The main purpose of the present study is efficiency growth in flue gases using latent heat recovery of the steam energy. The heat recovery analysis is evaluated by a validated computational fluid dynamics model by a commercial software. For this study, the effect of different tube arrangements, number of tubes, and flow direction in the shell on heat transfer and pressure drop were investigated. The results showed that in‐line arrangement of the tubes in the shell presents better thermal performance and also high pressure drop among the other arrangements. As a result, by considering the thermal performance and pressure drop, radial arrangement shows higher performance. According to the obtained results from Section 2 of the present study, by considering the radial arrangement of tubes in the shell, as the number of tube rises, the thermal performance declines.  相似文献   

8.
分析了锅炉烟道内烟温测量值偏低的原因及其影响因素。根据热交换理论提出了较完善的计算锅炉烟道内测量偏低值的理论方法 ,给出了几个计算示例 ,并对测量烟温的热电偶安装和维护注意事项作了说明  相似文献   

9.
为了降低锅炉排烟温度,回收锅炉尾部烟气热量,提高机组效率,降低机组发电煤耗,确保电除尘、引风机安全运行,采用复合相变换热器加热同机组的凝结水,在避免换热器结露积灰的前提下,能大幅度降低锅炉排烟温度,回收锅炉尾部烟气的余热,减少汽轮机的抽汽量,增加机组发电能力,可获得较好的经济效益。  相似文献   

10.
为实现对某电厂空气预热器旁路烟气余热利用系统的经济性综合评价,针对采用空气预热器旁路的机组提出了一种锅炉效率检测和计算方法,将空气预热器旁路传递的烟气热量作为锅炉热损失的一部分,确立了一套以试验检测为基础,结合理论推导计算的评价方法,定量分析了空气预热器旁路余热利用系统运行对锅炉效率、汽轮机热耗和厂用电率的影响,并开展...  相似文献   

11.
锅炉余热回收实用性改进   总被引:1,自引:0,他引:1  
梁文静 《锅炉制造》2012,(5):39-41,64
通过分析现有的冷凝锅炉存在的问题,在结构上对其进行改动,采用板式换热器模块化组合,设计出空气预热器、烟气冷凝器与锅炉为一体的余热回收锅炉,使锅炉热效率提高的同时,又具有结构紧凑、不易结垢、耐腐蚀能力强、更加安全、稳定可靠、使用寿命长等优点。  相似文献   

12.
1前言在现代煤粉锅炉中,制粉系统是锅炉设备最重要的辅助系统之一。直吹式制粉系统与锅炉设备的联系尤为密切,直吹式制粉系统的运行条件不但影响进入锅炉炉膛的热量大小和燃料进入炉膛的着火燃烧条件,而且还会影响流经空气预热器的空气量和出口热空气温度,导致空气预热器在尾部  相似文献   

13.
Consteel电炉余热锅炉的热平衡计算方法研究   总被引:2,自引:0,他引:2  
张培亭 《节能技术》2005,23(1):25-27
针对Consteel电炉余热锅炉烟气入口参数不稳定的特点,得到了余热锅炉的各项热损失、锅炉效率、有效利用热量和蒸发量的计算公式。对65t Consteel电炉炼钢设备余热锅炉进行了热平衡计算,计算表明,锅炉的排烟热损失随烟气入口温度的降低而增加,而锅炉效率、有效利用热量和蒸发量随烟气入口温度的降低而降低,锅炉的平均蒸发量为23.1t/h。  相似文献   

14.
氟塑料换热器以其耐腐蚀、耐磨损等优点而备受关注,但氟塑料热导率较低,换热能力差,限制了其广泛应用。石墨烯-PFA复合材料兼具石墨烯优异的导热性和可熔性聚四氟乙烯(PFA)良好的耐酸碱腐蚀性,是新一代的换热器材料。搭建了余热回收测试实验台,对石墨烯-PFA复合材料换热器和金属换热器的传热性能进行对比。研究了不同烟气流速、不同进口烟气温度以及不同石墨烯配比对复合材料传热性能的影响。结果表明:对于金属换热器和复合材料换热器,当烟气流速从2.0增加到4.0 m/s时,传热系数分别增加到原来的1.19和1.34倍;随着进口烟温的升高,两种材质的传热系数分别降低了15.6%和14.7%;随着石墨烯含量增加,复合材料的导热系数以及传热系数均增加。  相似文献   

15.
天然气锅炉改造为冷凝式锅炉的经济性评价   总被引:8,自引:2,他引:8  
燃气供热锅炉排烟温度较高,带走了大量的热能。如果加装冷凝式换热器回收烟气的显热及潜热,可以大大提高锅炉效率,但是加装换热器必然增加设备成本。本文通过对冷凝式换热器设计计算,计算出不同排烟温度下的热能回收设备投资回收期,从经济上分析了天然气锅炉改造为冷凝式锅炉的可行性,并给出了锅炉最佳排烟温度。  相似文献   

16.
We present a high-temperature proton exchange membrane fuel cell (HT-PEMFC) system model that accounts for fuel reforming, HT-PEMFC stack, and heat-recovery modules along with heat exchangers and balance of plant (BOP) components. In the model developed for analysis, the reaction kinetics for the fuel reforming processes are considered to accurately capture exhaust gas compositions and reactor temperatures under various operating conditions. The HT-PEMFC stack model is simplified from the three-dimensional HT-PEMFC CFD models developed in our previous studies. In addition, the parasitic power consumption and waste heat release from the various BOP components are calculated based on their heat-capacity curves. An experimental fuel reforming reactor for a 5.0 kWe HT-PEMFC system was tested to experimentally validate the fuel reforming sub model. The model predictions were found to be in good agreement with the experimental data in terms of exhaust gas compositions and bed temperatures. Additionally, the simulation revealed the impacts of the burner air-fuel ratio (AFR) and the steam reforming reactor steam-carbon ratio on the system performance and efficiency. In particular, the combined heat and power efficiency of the system increased up to 78% when the burner AFR was properly adjusted. This study clearly illustrates that an HT-PEMFC system requires a high degree of thermal integration and optimization of the system configuration and operating conditions.  相似文献   

17.
Oxy‐combustion of biomass can be a major candidate to achieve negative emission of CO2 from a pulverized fuel (pf)‐firing power generation plants. Understanding combustion behavior of biomass fuels in oxy‐firing conditions is a key for design of oxy‐combustion retrofit of pulverized fuel power plant. This study aims to investigate a lab‐scale combustion behavior of torrefied palm kernel shell (PKS) in oxy‐combustion environments in comparison with the reference bituminous coal. A 20 kWth‐scale, down‐firing furnace was used to conduct the experiments using both air (conventional) and O2/CO2 (30 vol% for O2) as an oxidant. A bituminous coal (Sebuku coal) was also combusted in both air‐ and oxy‐firing condition with the same conditions of oxidizers and thermal heat inputs. Distributions of gas temperature, unburned carbon, and NOx concentration were measured through sampling of gases and particles along axial directions. Moreover, the concentrations of SOx and HCl were measured at the exit of the furnace. Experimental results showed that burnout rate was enhanced during oxy‐fuel combustion. The unburnt carbon in the flue gas was reduced considerably (~75%) during combustion of torrefied PKS in oxy‐fuel environment as compared with air‐firing condition. In addition, NO emission was reduced by 16.5% during combustion of PKS in oxy‐fuel environment as compared with air‐firing condition.  相似文献   

18.
A new type of gas burner for Stirling engine that can recover adequate heat from exhaust gas was designed based on the plate heat exchanger and low‐swirl combustion technology, which consists of three components: a cyclone, a burner, and a circular plate heat exchanger. The circular plate heat exchanger tightly wound around the combustion chamber plays a high efficiency of heat recovery role. In consideration of the radial symmetry of the burner, a three‐dimensional numerical simulation was carried out by Ansys15. The velocity distribution, temperature distribution, and pressure distribution of the combustion gas were presented respectively. Strong backflow that came from the exhaust gas around the root of the flame in the combustion chamber and a vortex below the inlet of the exhaust gas channel were found, which were beneficial for the combustion and improving the uniformity of temperature distribution. Combustion behaviors of the burner under standard operating conditions were obtained, the highest temperature was about 2200 K in burner and the exhaust gas entered the plate heat exchanger at the temperature of 1375 K and exited at 464 K, with the waste heat recovery efficiency over 65.8%. And, the air‐fuel ratio and combustion power had negligible effect on the waste heat recovery efficiency.  相似文献   

19.
Waste heat recovery from the exhaust gas of industrial furnaces and kilns that are high energy-consuming equipment is one of the effective energy conservation methods because of its high sensible heat contents. The recuperative burner integrated with a recuperator and burner is one of the combustion equipments with many advantages of simple installation, compactness and easy control which can be applied to various fields of industry. A recuperative burner with the capacity of 400 kW was designed using the design data from experimental results. Performance tests on this burner were made. The exhaust gas analysis, including NOx, the measurement of the flame temperature, velocity, heat flux and heat flux analysis on the recuperative burner were the main topics of hot combustion tests. Design data from the experimental results are gas velocity, air velocity, air velocity, the tip-location of gas nozzle, the dimension of furnace suitable to burner capacity, the dimension of recuperator and the role of cross-shaped steel plate for increasing the energy efficiency in the recuperator. For uniform temperature distribution and good thermal efficiency, it is appropriate to maintain the furnace pressure at 2–3mmAq. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
《Energy》2005,30(2-4):359-371
Heating by radiation is widely used for materials processing. Electrical radiant heaters are the most commonly used heaters. Electricity is expensive and the combustion of fossils fuels for electricity production emits CO2. In order to convert the energy from the fuel to radiation energy directly and efficiently, our group has developed a compact, high efficiency, radiation converter using a spiral heat exchanger to recover the energy from high-temperature exhaust gas. The spiral heat exchanger has a weld-free construction to prevent cyclic thermal stress, and is constructed from inexpensive ferrite steel plates. The combustion chamber, equipped with a swirler to mix the gas fuel and air, can achieve stable combustion. The distribution of the surface temperature on the radiant tube was measured by a radiation thermometer, called a thermo viewer, and then the radiant energy emitted from the radiant tube was estimated. The efficiency of the spiral heat exchanger was measured from the temperature of the inlet air and exhaust gas. The heat exchanger achieved a high effectiveness, and heat loss from the exhaust gas was minimized. Consequently, a highly efficient radiation converter was produced to convert the fuel energy to radiation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号