首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Since probe-sonication is commonly used to homogenize liposomal formulations, it is necessary to investigate its influence on drug entrapment efficiency (EE) of liposomes. In this study, ibuprofen-loaded liposomes (IBU-Lip) dispersion was prepared from ibuprofen (IBU), soy phosphatidylcholine (SPC) and cholesterol (Chol) by thin film hydration and probe-sonication process. The influences of sonication time and power on EE were studied. Also, the effects of SPC-to-Chol ratio and drug-to-lipid ratio on EE were demonstrated. The results indicated that increasing sonication time or decreasing drug-to-lipid ratio could increase EE. Additionally, EE first increased then decreased as sonication power increased or SPC-to-Chol ratio decreased.  相似文献   

2.
采用固体分散技术结合泡腾技术制备硫酸头孢喹肟脂质体,考察了减压旋转蒸发温度、氯仿用量、大豆卵磷脂/胆固醇质量比、吐温-80用量、药/脂质量比、柠檬酸与NaHCO3用量对脂质体外观形态和包封率的影响. 通过正交实验优化制备条件,并探讨了脂质体的形成机制. 结果表明,制备硫酸头孢喹肟脂质体的优化条件为:大豆卵磷脂/胆固醇/吐温-80/柠檬酸/NaHCO3的质量比为37:18:5:33:7,药/脂质量比1:10. 该条件下所制脂质体外观形态良好,粒径分布均匀,平均粒径为(203±5) nm,平均包封率为55.17%±0.44%,平均载药量为5.04%±0.02%.  相似文献   

3.
Photo-responsive liposome was developed by modifying the surface of egg yolk phosphatidylcholine (egg PC) liposomes with hydrophobically modified poly(vinyl alcohol)–epoxypropoxy coumarin conjugate (HmPVA-EPC). Decanoyl chloride (DC) was used as a hydrophobic pendant for the hydrophobic modification of PVA. The fluorescence quenching of liposomes was more than 65% when the ratio of lipid/HmPVA-EPC was 1:0.01–1:0.1, but the value was less than 35% in the ratio range of 1:0.2–1:1. Under UV irradiation (λ = 254 nm), egg PC liposomes of which lipid/HmPVA-EPC ratio was 1:0.1 readily release their content for 60 min possibly due to the photo-dimerization of EPC residues.  相似文献   

4.
Bengt Borgström 《Lipids》1993,28(5):371-375
The long-chain phosphatidylcholine/sodium cholate aqueous system as substrate for human pancreatic phospholipase A2 (PLA2) was investigated. At a constant phosphatidylcholine (PC) concentration of 8 mM, the enzyme activity increased with a decrease in cholate (C) concentration up to a PC/C ratio of approximately 0.8 and then rather abruptly decreased to lower values at a ratio above 1.5. At ratios between 0.8 and 1.5, an increasing lag phase in the PLA2 activity was seen, indicating a progressive decrease in substrate availability to the enzyme. Reaction mixtures with a PC/C ratio of up to 0.67 were optically clear solutions composed of mixed bile salt/PC micelles of increasing mixed micellar aggregate size. Ratios between 0.67 and 1.5 were characterized by an increase in turbidity (at 330 and 450 nm) due to increasing formation of vesicles or liposomes. Above a PC/C ratio of 1.5, a sharp increase in turbidity was seen due to increasing formation of bilayer structures other than vesicles. Pure vesicles obtained by dialysis of mixed micellar solutions were not hydrolyzed by the enzyme. Addition of bile salts reversed the inhibition which was accompanied by a decrease in turbidity. Phosphatidylcholine was preferred as substrate for human PLA2 when present in large mixed disc-like bile salt micelles. Vesicular or other types of lamellar liquid-crystalline phases of long-chain phosphatidylcholine did not serve as substrate for PLA2.  相似文献   

5.
With the goal of designing a lysosomal phospholipase mimic, we optimized experimental variables to enhance CeIV‐assisted hydrolysis of phosphatidylcholine (PC) liposomes. Our best result was obtained with the chelating agent bis–tris propane (BTP). Similar to the hydrolytic enzyme, CeIV‐assisted hydrolysis of PC phosphate ester bonds was higher at lysosomal pH (~4.8) compared to pH 7.2. In the presence of BTP, the average cleavage yield at ~pH 4.8 and 37 °C was: 67±1 %, 5.7‐fold higher than at ~pH 7.2 and roughly equivalent to the percent of phospholipid found on the metal‐accessible exo leaflet of small liposomes. No CeIV precipitation was observed. When BTP was absent, there was significant turbidity, and the amount of cleavage at ~pH 4.8 (69±1 %) was 2.1‐fold higher than the yield obtained at ~pH 7.2. Our results show that BTP generates homogenous solutions of CeIV that hydrolyze phosphatidylcholine with enhanced selectivity for lysosomal pH.  相似文献   

6.
The solubilizing interactions of a series of quaternary ammonium surfactants [alkyl chain lengths C-12 (DoTAB), C-14 (TeTAB), and C-16 (HeTAB)] with liposomes formed by a mixture of lipids modeling the stratum corneum (SC) lipid composition (40% ceramides, 25% cholesterol, 25% palmitic acid, and 10% of cholesteryl sulfate) were investigated. Surfactant/lipid molar ratios (Re) and bilayer/aqueous phase partition coefficients (K) were determined by monitoring changes in static light scattering of the system during solubilization. Free surfactant concentration was always similar to the critical micelle concentration (CMC). A general assumption for phosphatidylcholine (PC) liposomes suggests that the free surfactant concentration must reach CMC for solubilization to occur. This assumption can be applied to SC liposomes in this study, and indicates that liposome solubilization was mainly driven by mixed micelle formation. The Re and K parameters fell as the surfactant alkyl chain length decreased or CMC increased. Thus, a higher CMC corrsponds to an increased ability of these surfactants to saturate or solubilize SC liposomes and to a lower degree of partitioning into liposomes or affinity with these bilayer structures. The overall balance of these opposing tendencies shows that TeTAB had the highest effectiveness with respect to the saturation and solubilization of SC structures in terms of total surfactant needed to produce these effects. Different trends in surfactant interaction with SC liposomes were observed when comparing Re and K parameters with those for PC liposomes. Because SC liposomes were more resistant to the surfactant action, the affinity of surfactants with these bilayer structures was higher in all cases.  相似文献   

7.
One of the subfractions of HDL involved in reverse cholesterol transport is γ-LpE. It has been assumed that, like preβ-LpAI, it can be generated during the interaction between phosphatidylcholine liposomes and lipoproteins and can contribute to more efficient cholesterol efflux after the introduction of liposomes to plasma. However, there has been no evidence concerning what the sources of these particles in plasma might be. Here, we determined whether the interaction of phosphatidylcholine liposomes with VLDL and the subsequent conversions of particles could be a source of new γ-LpE particles. We found that the interaction between liposomes and VLDL affected its lipid and protein composition. The content of phospholipids increased (~96 %) while the content of free cholesterol and apolipoprotein E decreased in VLDL during the reaction with liposomes (~100 and ~24 %, respectively). New particles which did not contain apolipoprotein B were generated. Heterogeneous HDL-sized populations of particles were generated, containing phospholipids and apolipoprotein E as the sole apolipoprotein, with densities from 1.063 to 1.21 g/ml, either with γ-mobility on agarose gel and Stokes diameters from 8.58 to 22.07 nm or with preβ-mobility and Stokes diameters from 9.9 to 21.08 nm. The obtained results contribute to the understanding of changes in lipoproteins under the influence of phosphatidylcholine liposomes, showing the formation of new (γ-LpE)-like and (preβ-LpE)-like particles, similar in mobility and size to plasma HDL-LpE. These newly generated particles can claim a share of the antiatherogenic effects of liposomes, observed in studies both in vitro and in vivo.  相似文献   

8.
pH‐Sensitive liposomes were prepared by modifying the surfaces of egg phosphatidylcholine (EPC) liposomes and dioleoylphosphatidylethanolamine (DOPE) liposomes with an acidic proteinoid. The acidic proteinoid (Prot AL) was prepared by a melt‐condensation of aspartic acid and leucine (98.5:1.5 mol/mol). The maximum amount of Prot AL accommodated by EPC liposomes without loss of the fluorescence quenching of calcein occurred when the ratio of Prot AL to EPC was 1:2. The EPC liposomes exhibited pH‐dependent release but the degree of release in 5 min was less than 10% in the range of pH 6.0–8.0. A marked increase in release was observed at pH 5.5 and the degree of release was about 38%. Acidification‐induced contraction of Prot AL may impose a mechanical stress on the liposomal membrane, deforming and demaging the membrane. On the other hand, a high fluorescence quenching, more than 60%, was obtained when the ratio of Prot AL to DOPE was 5.5:10. The pH‐sensitivity of DOPE liposomes bearing the proteinoid was much higher than that of egg PC liposomes bearing the same proteinoid. Following the changes in the size with varying pH, DOPE liposomes seemed to be disintegrated.  相似文献   

9.
Peroxidation of egg yolk phosphatidylcholine (egg PC) liposomes was induced by addition of ascorbic acid (AsA) and Fe(II) in the presence of a trace of autoxidized egg PC (PC−OOH), but not in the absence of PC−OOH. PC−OOH was degraded upon addition of AsA and Fe(II) but not of either one alone. The results suggest that PC−OOH is necessary to initiate lipid peroxidation by AsA/Fe(II). AsA oxidation in the bulk water phase was also associated with an increase in lipid peroxidation by AsA/Fe(II) in the presence of PC−OOH, but not in the absence of PC−OOH. Furthermore, the spin probe 12-NS [12-(N-oxyl-4,4′-dimethyloxazolidin-2-yl)stearic acid], which labels the hydrophobic region of dimyristoyl phosphatidylcholine (DMPC) liposomal membranes, was degraded upon addition of AsA and Fe(II) in the presence of PC−OOH, but not in the absence of PC−OOH. These results indicate that the “induction message” that is associated with decreases of PC−OOH and AsA in the initiation step of lipid peroxidation must be transferred from the membrane surface to the inner hydrophobic membrane region. AsA in the bulk phase was oxidized faster and more extensively upon its addition together with Fe(II) to egg PC liposomes than to DMPC liposomes, though the initial content of PC−OOH in the former was 5–10 times lower than in the latter. This suggests that, in egg PC liposomes, the OOH-groups of new PC−OOH generated in the inner membrane regions must become accessible from the surface, enabling reaction with AsA/Fe(II) which in turn would result in an extensive decrease in AsA. By contrast, in DMPC liposomes, that do not generate PC−OOH, AsA is only oxidized slightly in connection with the degradation of the PC−OOH initially present. The effect of surface charges on the membrane surface was also studied to obtain further information on the initiation step of lipid peroxidation. The rate of lipid peroxidation by AsA/Fe(II) or Fe(III) decreased in the order, egg PC liposomes ≫negatively charged egg PC liposomes containing dicetylphosphate>positively charge egg PC liposomes containing stearylamine. The rate of associated AsA oxidation was in the order, egg PC liposomes≫egg PC/stearylamine liposomes>egg PC/dicetylphosphate liposomes. However, in DMPC liposomes that do not generate PC−OOH, the rates of AsA oxidation associated with the reductive cleavage of PC−OOH by AsA/Fe(II) and coupled with the reduction of Fe(III) to Fe(II) were in the order, DMPC liposomes =DMPC/stearylamine liposomes≫DMPC/dicetylphosphate liposomes. These differences in the rates of lipid peroxidation, depending on differences in membrane charge, are discussed in relation to two properties of AsA: (i) its antioxidant property through trapping of lipid radicals and (ii) its prooxidant properties (a) by being an effective iron chelator thus altering the reactivity of iron with oxygen and peroxides and (b) by being an iron reductant and providing a source of Fe(II).  相似文献   

10.
The alterations caused by different surfactants in the permeability of liposomes formed by a lipid mixture that models the stratum corneum (SC) composition (40% ceramides, 25% cholesterol, 25% palmitic acid, and 10% cholesteryl sulfate) were investigated. The surfactant/lipid molar ratios (Re) and the bilayer/aqueous phase surfactant partition coefficients (K) were determined at two sublytic levels. The selected surfactant were sodium dodecyl sulfate (SDS); sodium dodecyl ether sulfate (SDES) to assess the influence of the ethylene oxide groups on the anionic surfactant’s behavior; Triton X-100 (OP-10EO) and dodecyl betaine (D-Bet) as representatives of nonionic and amphoteric surfactants. Permeability alterations were determined by monitoring the increase in the fluorescence intensity of liposomes due to the 5(6) carboxyfluorescein (CF) released from the interior of vesicles. The SC liposomes/surfactant sublytic interactions were mainly ruled by the action of surfactant monomers. OP-10EO showed the highest ability to alter the permeability of bilayers and the highest affinity with these structures, whereas D-Bet showed the lowest tendencies. Although SDS and SDES exhibited similar activity at 50% CF release (similar Re values), SDES appeared to be more active at 100% CF release, its affinity with bilayers being also increased. The different ability exhibited by SDS, SDES, and D-Bet (same alkyl chainlength) to alter the permeability of SC liposomes emphasizes the role played by the polar part of these surfactants in this interaction. Different trends in the evolution of Re and K were observed when comparing the results with those reported for phosphatidylcholine (PC) liposomes. Thus, whereas SC liposomes appeared to be more resistant to the action of surfactants, the surfactant affinity with SC bilayers was always greater than that reported for PC bilayers.  相似文献   

11.
Flavonoid compounds are known for their antibacterial, anti-inflammatory, and anticancer properties. Therefore, they can influence membrane properties that interest us, modifying both their structure and functions. We used kaempferol (K) and myricetin (M) as representatives of this group. We investigated the influence of the abovementioned compounds on model cell membranes’ properties (i.e., Langmuir monolayers and liposomes). The basic research methods used in these studies were the Langmuir method with Brewster angle microscopy and microelectrophoresis. The π–A isotherms were registered for the pure components and mixtures of these compounds with phosphatidylcholine (PC) in appropriate volume ratios. Using mathematical equations, we established that kaempferol, myricetin, and the lipids formed complexes at 1:1 ratios. We derived the parameters characterizing the formed complexes, i.e., the surfaces occupied by the complexes and the stability constants of the formed complexes. Using the microelectrophoretic method, we determined the dependence of the lipid membranes’ surface charge density as a function of the pH (in the range of 2 to 10) of the electrolyte solution. The presented results indicate that the PC membrane’s modification with kaempferol or myricetin affected changes in the surface charge density and isoelectric point values.  相似文献   

12.
Yoshiko Tampo  Masanori Yonaha 《Lipids》1996,31(10):1029-1038
The processes in producing a lag phase in Fe2+-supported lipid peroxidation in liposomes were investigated. Incorporation of phosphatidylserine (PS) or dicetyl phosphate (DCP) into phosphatidylcholine [PC(A)] liposomes, which have arachidonic acid, produced a marked lag phase in Fe2+-supported peroxidation, where PS was more effective than DCP. Phosphatidylcholine dipalmitoyl [PC(DP)] with a net-neutral charge was still effective in producing a lag phase, though weak. Increasing concentrations of PS, DCP, and PC(DP) prolonged the lag period. Initially after adding Fe2+, slight oxygen consumption occurred in PC(A)/PS liposomes including hydroperoxides, followed by a lag phase. An increase in the hydroperoxide resulted in a shortening of the lag period. The initial events of Fe2+ oxidation accompanied by oxygen consumption were dependent on the hydroperoxide content, but significant changes in diene conjugation and hydroperoxide levels at this stage were not found. The molar ratios of both dis-appeared Fe2+ and consumed O2 to preformed hydroperoxide in liposomes with or withouttert-butylhydroxytoluene were constant, regardless of the different amounts of lipid hydroper-oxides. The antioxidant completely inhibited the propagation of lipid peroxidation in the lipid phase, following a lag phase. In a model system containing 2,2′-azobis (2-amidinopropane) dihydrochloride, Fe2+ were consumed. We suggest that Fe2+ retained at a high level on membrane surfaces play a role in producing a lag phase following the terminating behavior of a sequence of free radical reactions initiated by hydroperoxide decompositin, probably by intercepting peroxyl radicals.  相似文献   

13.
Although eicosapentaenoic acid (EPA) has been shown to have beneficial effects in the prevention of atherosclerosis, the mechanism by which these effects occur is not entirely clear. We investigated the lipid composition of platelets in paired subjects with and without atherosclerotic disease, either hypercholesterolemic (low density lipoprotein [LDL] cholesterol [Chol]≥170 mg/dl) or normocholesterolemic (LDL-Chol<170 mg/dl). Platelets from patients with atherosclerotic disease had a lower phosphatidylcholine (PC)/Chol ratio, when compared with those from patients without atherosclerotic disease, irrespective of LDL-Chol levels. Eleven patients with atherosclerotic disease were treated with purified. EPA ethyl ester (1.8 g/day), and changes in lipid composition of platelets were investigated. Plasma levels of total Chol and LDL-Chol decreased significantly after EPA administration. The phospholipid (PL)/Chol ratio and the PC/Chol ratio in platelets from patients with atherosclerotic disease increased significantly after 4–10 wk EPA treatment. The EPA content in platelets increased, while the arachidonic acid (AA) content decreased. EPA-induced changes in the PL/Chol and the PC/Chol ratios of platelets, as well as fatty acyl chain shifts, may be related to the beneficial effects in preventing atherosclerosis, possibly by increase in the membrane fluidity.  相似文献   

14.
Alteration of lipid constituents of cellular membranes has been proposed as a possible mechanism for cancer promotion by fumonisin B1 (FB1). To further investigate this hypothesis a dietary dosage which initiates and promotes liver cancer (250 mg FB1/kg) was fed to male Fischer rats for 21 days and the lipid composition of plasma, microsomal, mitochondrial and nuclear subcellular fractions determined. The effect of FB1 on the cholesterol, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), as well as sphingomyelin (SM) and the phospholipids-associated fatty acid (FA) profiles, were unique for each subcellular membrane fraction. PE was significantly increased in the microsomal, mitochondrial and plasma membrane fractions, whereas cholesterol was increased in both the microsomal and nuclear fraction. In addition SM was decreased and increased in the mitochondrial and nuclear fractions, respectively. The decreased PC/PE and polyunsaturated/saturated (P/S) FA ratio in the different membrane fractions suggest a more rigid membrane structure. The decreased levels in polyunsaturated fatty acids in PC together with a pronounced increase in C18:1ω9 and C18:2ω6 were indicative of an impaired delta-6 desaturase. The increased ω6/ω3 ratio and decreased C20:4ω6 PC/PE ratio due to an increase in C20:4ω6 in PE relatively to PC in the different subcellular fractions suggests a shift towards prostanoid synthesis of the E2 series. Changes in the PE and C20:4ω6 parameters in the plasma membrane could alter key growth regulatory and/or other cell receptors in lipid rafts known to be altered by FB1. An interactive role between C20:4ω6 and ceramide in the mitochondria, is suggested to regulate the balance between proliferation and apoptosis in altered initiated hepatocytes resulting in their selective outgrowth during cancer promotion effected by FB1.  相似文献   

15.
HDL particles can be structurally modified in atherosclerotic disorders associated with low HDL cholesterol level (HDL-C). We studied whether the lipidome of the main phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) species of HDL2 and HDL3 subfractions is associated with premature coronary heart disease (CHD) or metabolic syndrome (MetS) in families where common low HDL-C predisposes to premature CHD. The lipidome was analyzed by LC-MS. Lysophosphatidylcholines were depleted of linoleic acid relative to more saturated and shorter-chained acids containing species in MetS compared with non-affected subjects: the ratio of palmitic to linoleic acid was elevated by more than 30%. A minor PC (16:0/16:1) was elevated (28–40%) in MetS. The contents of oleic acid containing PCs were elevated relative to linoleic acid containing PCs in MetS; the ratio of PC (16:0/18:1) to PC (16:0/18:2) was elevated by 11–16%. Certain PC and SM ratios, e.g., PC (18:0/20:3) to PC (16:0/18:2) and a minor SM 36:2 to an abundant SM 34:1, were higher (11–36%) in MetS and CHD. The fatty acid composition of certain LPCs and PCs displayed a characteristic pattern in MetS, enriched with palmitic, palmitoleic or oleic acids relative to linoleic acid. Certain PC and SM ratios related consistently to CHD and MetS.  相似文献   

16.
Richard C. Crain 《Lipids》1982,17(12):935-943
A protein that accelerates transfer of phospholipids of varying head group and fatty acid composition has been purified from bovine liver. As previously found for other phospholipid transfer proteins, “nonspecific lipid transfer protein” stimulates a kinetically biphasic transfer of radioactively labeled phospholipid from small unilamellar vesicles to unlabeled multilamellar vesicles. The kinetics are consistent with rapid transfer of phospholipid from the outer monalyer and slow transfer of that localized in the inner monolayer (half-times greater than 3 days for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol). Protein catalyzed transfer is inhibited by high ionic strength and has an activation energy of 35 kJ/mol. The broad lipid specificity and ease of large-scale purification make these proteins candidates for membrane phospholipid compositional modification. The compositions of rat liver mitochondrial and microsomal membranes and Morris hepatoma 7288c mitochondrial membranes were altered by incubation with lipid vesicles and nonspecific lipid transfer protein. Incubation with phosphatidylcholine vesicles led to increased levels of phosphatidylcholine and decreased levels of other transferrable lipids (phosphatidylethanolamine, phosphatidylinositol, and cholesterol) unless the latter were included in the vesicles. When vesicles containing dipalmitoylphosphatidylcholine were incubated with microsomal membranes, a large increase in disaturated phosphatidylcholine was also observed. These changes in composition were correlated with activities of membrane enzymes. It appears that microsomal glucose-6-phosphatase is inhibited by increased phosphatidylcholine saturation. Moreover, this enzyme is also inhibited by decreases in the phosphatidylethanolamine/phosphatidylcholine ratio whereas NADPH cytochrome c reductase is not. Likewise, decreased cholesterol to phospholipid ratios did not greatly affect the abnormally low levels of hepatoma succinate cytochrome c reductase activity. This paper was presented at the 73rd AOCS annual meeting, Toronto, Canada, May 1982.  相似文献   

17.
In this study, we established a procedure based on the microencapsulation vesicle (MCV) method for preparing surface‐modified liposomes, using polyethylene glycol (PEG) and a site‐directed ligand, with high entrapment efficiency of cytochrome c (Cyt c). For preparing a water‐in‐oil (W/O) emulsion, egg phosphatidylcholine and cholesterol were dissolved in organic solvents (O phase) and emulsified by sonication with aqueous solution of Cyt c (W1). Although the dispersion stability of the W1/O emulsion was low when n‐hexane was used to dissolve the lipids in the O phase, it was substantially improved by using mixed solvents consisting of n‐hexane and other organic solvents, such as ethanol and dichloromethane (DCM). The W1/O emulsion was then added to another water phase (W2) to prepare the W1/O/W2 emulsion. PEG‐ and/or ligand‐modified lipids were introduced into the W2 phase as external emulsifiers not only for stabilizing the W1/O/W2 emulsion but also for modifying the surface of liposomes obtained later. After solvent evaporation and extrusion for downsizing the liposomes, approximately 50% of Cyt c was encapsulated in the liposomes when the mixed solvent consisting of n‐hexane and DCM at a volume ratio of 75/25 was used in the O phase. Finally, the fluorescence‐labeled liposomes, with a peptide ligand having affinity to the vasculature in adipose tissue, were prepared by the MCV method and intravenously injected into mice. Confocal microscopy showed the substantial accumulation of these liposomes in the adipose tissue vessels. Taken together, the MCV technique, along with solvent optimization, could be useful for generating surface‐modified liposomes with high drug entrapment efficiency for targeted delivery.  相似文献   

18.
We investigate the potential of low molecular water‐soluble chitosan (LMWSC), LMWSC–methoxy polyethylene glycol (MPEG) [LCP], and LMWSC–MPEG–cholesterol (LCP–Ch) as a gene carrier. LMWSC with free‐amine group was formed at the low weight ratio, above a 1:2 weight ratio of plasmid DNA:LMWSC. LCP and LCP–Ch achieved complex formation of above 1:8 and 1:24 by reacting with MPEG and cholesterol (Ch) on the amine‐group, respectively. Particle sizes at the pH 6.5 and 7.0 were about 100–120 nm and 120–160 nm, respectively. The surface charge of the complex also depended on the pH. At pH 6.5, the surface charge of the complex was higher than that at pH 7.0. The zeta potential of the LCP modified with MPEG or of the LCP‐Ch modified with cholesterol has lower positive value than that of LMWSC because of the decrease of the positive charge. The morphologies of the complexes by transmission electron microscope were of spherelike shape with the average diameters of about 100–150 nm. Among the three gene carriers, LCP–Ch/plasmid DNA showed the highest gene expression owing to the hydrophobic interaction between cell surface and cholesterol. No cytotoxicity was observed in the gene carriers investigated in this study at various concentrations. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3545–3551, 2006  相似文献   

19.
This study addresses two questions: 1) what is the maximum amount of tocopherol that can be contained in egg phosphatidylcholine liposomes, and 2) what is the stability of these vesicles in the presence of serum proteins? These liposomes, made with a French pressure cell, can contain no more than 33 mol % of tocopherol. Tocopherol changes liposomes in a manner similar to cholesterol, making them larger, less permeable to aqueous dyes and highly resistant to protein-induced disruption. The suppression of protein-induced disruption is more pronounced with tocopherol than with cholesterol, even at lower molar ratios. Thus, liposomes containing alpha tocopherol (15 to 30 mol%) may be useful for delivering physiological quantities of this vitamin to cells in culture or to tissues in vivo.  相似文献   

20.
The alterations caused by betaine-type zwitterionic and anionic surfactant mixed systems in the permeability of unilamellar liposomes have been investigated. The partition coefficient of these systems, at different molar fractions, between the aqueous phase and the lipid bilayer of liposomes has been determined. These surfactant mixed systems were formed byN-dodecyl-N,N-dimethylbetaine (C12-Bet) and sodium dodecyl sulfate (SDS) in the presence of 20 mM PIPES buffer and 110 mM Na2SO4, at pH 7.21. Unilamellar liposomes were prepared from egg phosphatidylcholine and phosphatidic acid (9:1 molar ratio). The release of the fluorescent agent 5-(6)-carboxyfluorescein induced by the systems has been studied at sub-solubilizing concentrations. When the molar fraction of C12-Bet/SDS is about 0.4, the critical micelle concentration values of these systems exhibit a minimum, whereas their partition coefficient between the aqueous phase and lipid bilayer of lipid bilayers shows a maximum. There is a consistent correlation between the partition coefficient and the ability of the different systems of surfactants to modify the permeability of liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号