共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Toffoli A. Gianinetti A. Cavallero F. Finocchiaro A. M. Stanca 《Journal of the Institute of Brewing》2003,109(4):337-341
The increase of temperature at the beginning, in the middle and at the end of malting has been evaluated in terms of quality parameters (malting losses, index of acrospire development, friability, HWE, viscosity, SNR) and enzyme (β‐glucanase and α‐amylase) development, in a good quality malting barley (Otis) and a higher protein‐higher β‐glucan content barley used for feed (Extra). A shift from 15 to 20°C at the beginning of malting was shown to increase acrospire development, friability, HWE and SNR and to reduce viscosity, without significantly affecting malting losses. This effect was related to higher β‐glucanase and α‐amylase activities within each variety. However, the same enzyme activities were not directly related to a better malting quality when the two genotypes were compared. This confirms previous indications that diversity in malting performance between genotypes cannot simply be traced back to differences in enzyme activities; but, indeed, it suggests that, for a defined barley lot, changes in the levels of enzyme activities following different malting procedures may have a direct effect on malt quality. 相似文献
2.
J.‐L. Molina‐Cano E. Romera R. Aikasalo A.M. Prez‐Vendrell J. Larsen A. Rubi 《Journal of the Institute of Brewing》2002,108(2):221-226
Forty one samples of the malting barley cultivar Scarlett were collected from both Scandinavia (15 from Finland and 10 from Denmark) and the Iberian Peninsula (15 from Spain and 1 from Portugal), during the harvest years of 1998 and 1999. These samples were subjected to grain analyses, comprising protein content, hordein fractions by high performance liquid chromatography (HPLC) and β‐glucan content. The samples were micro‐malted and the malts were analysed to determine different patterns in the influence of grain composition on malt extract development linked to the two contrasting environments. The most obvious difference found between the Scandinavian and Iberian barleys was the effect of the total and insoluble barley β‐glucans. They were an effective barrier of malt extract in the North, but appeared to increase extract in the South. A conclusion was that the positive effect of β‐glucans in the Iberian barleys was a consequence of their greater capacity to synthesise and release β‐glucan hydrolases during germination. 相似文献
3.
Masahiro Kurakake Yuuki Yamanouchi Kouta Kinohara Shingo Moriyama 《Journal of food science》2013,78(4):C502-C506
Streptomyces sp Mo endo‐β‐1,3‐glucanase was found to have hydrolyzing activity toward curdlan and released laminarioligosaccharides selectively. The molecular weight was estimated to be 36000 Da and its N‐terminal amino acid sequence was VTPPDISVTN. The optimal pH was 6 and the enzyme was found to be stable from pH 5 to 8. The optimal temperature was 60 °C and the activity was stable below 50 °C. The enzyme hydrolyzed selectively curdlan containing only β‐1,3 linkages. The enzyme had 89% relative activity toward Laminaria digitata laminarin, which contains a small amount of β‐1,6 linkages compared with curdlan, while Eisenia bicyclis laminarin with a higher amount of β‐1,6‐linkages, was not hydrolyzed. Mo enzyme adsorbed completely on curdlan powder. The enzymatic hydrolysis of curdlan powder resulted in the accumulation of laminaribiose (yield 81.7%). Trisaccharide was inevitably released from the hydrolysis of laminarioligosaccharides with 5 to 7 degrees of polymerization (DP). Although the enzyme cleaved off disaccharide (DP 2) from tetrasaccharide (DP 4), the reaction rate was lower than those of DP 5 to 7. The results indicated that the active site of Mo endo‐β‐1,3‐glucanase can efficiently recognize glucosyl residue chain of greater than DP 5 and hydrolyzes the β‐1,3 linkage between the 3rd and 4th glucosyl residue. 相似文献
4.
The drying and survival of enzyme activities during the kilning of malt were modelled. A set of experiments at the micro‐malting scale was carried out for model identification and validation. The dynamic models predict the effects of the kilning programme, i.e. the temperature profile on grain moisture, activities of β‐glucanase, α‐amylase and limit‐dextrinase, and diastatic power during kilning. The process behaviour was analysed by simulations. The predictions match the malting experience well. The models increase the general understanding of enzyme inactivation and can be used in planning the kilning programme. 相似文献
5.
Starch was isolated from four new waxy barleys and compared with normal and high‐amylose barley starch. The waxy barley samples were selected lines from crosses of Swedish hulled and naked barley cultivars with the cultivar Azhul as donor of the waxy gene. The starches from the waxy barley samples were found to contain 0.7–2.6% amylose when determined iodimetrically by amperometric titration and 0.0–0.9% when determined by size exclusion chromatography after debranching. However, Sepharose CL‐2B elution profiles of the starches detected by iodine staining showed that all four waxy samples were free from detectable amounts of amylose. The amylopectin starches were found to contain a small polysaccharide fraction with molecular size smaller than amylopectin, with an iodine staining λmax range of 550–600 nm. The water extractable and acid extractable β‐glucan contents in the waxy barley cultivars were generally found to be higher than those in normal barley. 相似文献
6.
R. C. Agu D. L. Devenny I. J. L. Tillett G. H. Palmer 《Journal of the Institute of Brewing》2002,108(2):215-220
Sulphuric acid dehusked barley had a higher germinative energy and lower microbial infection than normal huskless (naked) barley, suggesting that the pericarp layer harboured microbial infection which may have limited the germination rate. Dehusking the normal huskless barley using sulphuric acid resulted in lower microbial infection, and increased germinative energy. The normal huskless barley sample had a higher β‐glucan content than the acid‐dehusked barley and had slower β‐glucan breakdown during malting. This resulted in the release of seven times more β‐glucan during mashing, and the production of wort of higher viscosity. The normal huskless barley sample had a higher total nitrogen content than the acid‐dehusked barley but both samples produced similar levels of amylolytic (α‐ and β‐amylase) activity over the same malting period. No direct correlation was found between barley total nitrogen level and the amylolytic activity of the malt. When barley loses its husk at harvest, the embryo is exposed and may be damaged. This may result in uneven germination which can reduce malting performance and hence malt quality. 相似文献
7.
This paper describes initial experiments carried out in a collaborative study with Perten Instruments, Sweden, using Near‐Infrared spectroscopy to assess β‐glucan content in single grains of barley and malt. In general, the method needs further development, but this study shows that it has potential as a valuable tool for assessing endosperm modification of malt. The method is fast and non‐destructive and therefore allows other parameters related to endosperm modification to be analysed using the same grains. 相似文献
8.
Lena Rimsten Ann‐Katrin Haraldsson Roger Andersson Marie Alminger Ann‐Sofie Sandberg Per man 《Journal of the science of food and agriculture》2002,82(8):904-912
The effects of malting on β‐glucan and phytate were investigated in one naked and one covered barley by a full factorial experiment with three factors (steeping temperature, moisture content and germination temperature) each with two levels. Analysis of total content of β‐glucan in the malted samples showed small changes after steeping at the high temperature (48 °C), while steeping at the lower temperature (15 °C) gave a significantly lower content. This trend was even stronger for β‐glucan unextractable at 38 °C. Analysis of the activity of β‐glucanase for the samples steeped at 15 °C showed a strong increase over the time of germination, while those steeped at 48 °C had a much slower development. The other two factors influenced the outcome to a small extent, mainly because the steeping temperature was the most important factor overall where any changes in β‐glucan and β‐glucanase were observed. When β‐glucan was extracted at 100 °C, a larger yield was obtained, and this was influenced by the steeping temperature in a much stronger way than for β‐glucan extracted at 38 °C. Determination of average molecular weight for β‐glucan extracted at 100 °C gave a lower value for samples steeped at 15 than at 48 °C. The design did not have any large effects on phytate degradation and phytase activity. However, it indicated that selective control of the enzymes might be possible, since phytase activity was barely affected by the parameters studied, while β‐glucanase was heavily affected. © 2002 Society of Chemical Industry 相似文献
9.
β‐Glucanase from barley malt is known to be thermolabile but important in the mashing process. Therefore, the potential of increasing the thermostability of β‐glucanase in ACES buffer (0.1 M, pH 5.6) by high hydrostatic pressure has been investtigated. Inactivation of the enzyme as well as changes of the conversion rate in response to combined pressure‐temperature treatments in the range of 0.1–900 MPa and 30–75°C were assessed by analyzing the kinetic rate constants. A significant stabilization of β‐glucanase against temperature‐induced inactivation was detected at 400 MPa. With increasing pressure up to 600 MPa the catalytic activity of β‐glucanase was progressively decelerated. However, for the overall depolymerization reaction of β‐glucans in ACES buffer (0.1 M, pH 5.6) a maximum was identified at 215 MPa and 55°C yielding approximately 2/3 higher degradation of β‐glucan after 20 min as compared to the maximum at ambient pressure (45°C). 相似文献
10.
Ann‐Katrin Haraldsson Lena Rimsten Marie Larsson Alminger Roger Andersson Thomas Andlid Per man Ann‐Sofie Sandberg 《Journal of the science of food and agriculture》2004,84(7):653-662
The effect of different steeping conditions on phytate, β‐glucan and vitamin E in barley during malting was studied by a full factorial experiment with three variables (steeping temperature, barley variety and steeping additions). Addition of lactic acid to the steeping water induced a reduction of phytate during steeping and germination, especially in combination with the high steeping temperature (48 °C). Furthermore, lactic acid and high temperature steeping inhibited β‐glucanase development, resulting in a well‐preserved β‐glucan content after germination. When steeping was conducted without addition of lactic acid, the low steeping temperature (15 °C) promoted development of both phytase and β‐glucanase activity during germination. A slightly higher level of tocopherols and tocotrienols was observed in samples steeped at 15 °C than in samples steeped at 48 °C. However, addition of lactic acid reduced the amount for both temperatures. When lactic acid bacteria were added to the steeping water none of the parameters studied differed from samples steeped with water only. The results show the possibility of combining phytate degradation with a preserved β‐glucan content during malting and can thus be of interest for development of cereal products with improved nutritional value. Copyright © 2004 Society of Chemical Industry 相似文献
11.
Variety and germination time effect on total β‐glucan,water‐insoluble β‐glucan,water‐soluble β‐glucan components and β‐glucanase levels in improved sorghum varieties SK5912, KSV8 and ICSV400 before and after malting and their relationships to wort viscosity 下载免费PDF全文
Christian I. Abuajah Augustine C. Ogbonna Christopher U. Sonde Blessing Offia‐Olua Elechi Owhoeke 《Journal of the Institute of Brewing》2016,122(1):93-101
The effects of variety and germination time on β‐glucan components – total β‐glucan (TBG), water insoluble β‐glucan (WIBG) and water soluble β‐glucan (WSBG) and β‐glucanase (BG) levels – before and after malting in improved sorghum varieties SK5912, KSV8 and ICSV400 and their relationships to wort specific viscosity (SV) were studied. This study was part of efforts to aid local malting and brewing industries in the application of sorghum varieties that are abundantly available to reduce costs. At the fifth day of germination, variety ICSV400 had the lowest TBG, WIBG and WSBG levels in its raw and malt samples. Variety SK5912 had the highest TBG, WIBG and WSBG levels in its raw samples, while variety KSV8 had the highest levels of TBG, WIBG and WSBG in its malt samples. Similarly, variety ICSV400 malts developed the highest BG levels, while the KSV8 malts gave the lowest level. The effect of variety, germination time and variety × germination time interaction was significant (p < 0.05) on the TBG, WIBG and BG levels and was not significant on the WSBG levels. Weak and significant correlation of TBG levels with SV (0.25, p < 0.05 for SK5912; 0.24, p < 0.05 for KSV8; and 0.31, p < 0.05 for ICSV400) was observed in all the samples, suggesting that the low β‐glucan levels may not be primarily and solely responsible for any viscosity impediments associated with sorghum worts during run‐off. With improvement in the effective utilization of sorghum, ICSV400 appeared the most suitable variety for malting and brewing in Nigeria.Copyright © 2016 The Institute of Brewing & Distilling 相似文献
12.
W. T. B. Thomas 《Journal of the Institute of Brewing》2011,117(3):389-393
A population of barley lines, derived by mutation in the hull‐less variety, Penthouse, was included in a replicated trial, along with Penthouse and the hulled malting cultivar, Optic. Samples were assessed for a range of grain quality traits, then malted, with germination for either 4 or 5 days, prior to kilning. Most lines had grain β‐glucan contents lower than that of Penthouse, but there was no significant correlation between grain and malt β‐glucan content. Malt β‐glucan levels were indicative of differences in cell wall breakdown between 4 and 5 days germination, but negative associations with distilling parameters Extract and Alcohol Yield, were not statistically significant. It was concluded that the lines differed in the rate and extent of cell wall breakdown and that grain shape may influence modification in distal parts of the grain. However, a malting regime, optimised to suit Optic may be less suited to discriminating between hull‐less lines of reasonable quality. 相似文献
13.
14.
J. S. Swanston A. C. Newton S. P. Hoad W. Spoor 《Journal of the Institute of Brewing》2005,111(2):144-152
Four barley cultivars were grown in replicated trials at three sites in Scotland in 2000, both as pure stands and in all four possible three‐component mixtures. After harvest, some grain from the pure stands was used to synthesise four blends of three component varieties. Grain from the pure stands, the mixtures and the blends was malted and all samples were assessed for total β‐glucan content. At two of the sites, field grown mixtures were shown to have lower malt β‐glucan than blends made prior to malting, although their grain β‐glucan contents had not been significantly different from the means of the component varieties. At the other site, the mixtures had higher levels of soluble nitrogen than the blends or the means of their component cultivars although, significant differences had not occurred in grain nitrogen contents. Three component blends were also made from the malted grain of the pure stands and hot water extracts were measured on all samples including the blends made before and after malting. There were considerable differences between sites and also between mixtures, blends and the mean of the mixture components when assessed separately. At all sites and for all varietal combinations, field grown mixtures were shown to be equal or superior to blends made after harvesting, in addition to frequently exceeding the mean of their components. It was concluded that the advantages, in β‐glucan or protein modification, associated with mixtures resulted from interactions between components in the growing environment and that interactions in the malting and mashing environments had little if any effect. 相似文献
15.
16.
EJ. Nso P.E. Ajebesome C.M. Mbofung G.H. Palmer 《Journal of the Institute of Brewing》2003,109(3):245-250
The malting characteristics of sorghum malts produced locally in Cameroon for Bili‐Bili brewing were compared with those of malts produced in a laboratory. The analytical values of both malts were similar but the brewing potential of the laboratory malts were marginally better than those of the locally produced malts. Of the three cultivars examined, Madjeru had the lowest levels of β‐amylase, maltose levels and fermentability. The worts of the Madjeru filtered the slowest of the three malts. During malting β‐glucanase developed rapidly and development was temperature‐dependent. 相似文献
17.
The (1–3, 1–4)‐β‐Glucanases in Malting Barley: Enzyme Survival and Genetic and Environmental Effects
J.E. Georg‐Kraemer E. Caiero E. Minella J.F. Barbosa‐Neto S.S. Cavalli 《Journal of the Institute of Brewing》2004,110(4):303-308
Eighteen barley genotypes used in Brazilian malting barley breeding programs were characterized in relation to (1–3, 1–4)‐β‐glucanase activity in green and kilned malt. They were tested to determine the loss of enzyme activity during kilning in the malting process and the environmental effects on enzyme activity were measured. The genotypes analyzed showed great variation regarding the enzyme activity in both kinds of malt, in a range from 531.94 to 934.31 U/kg in green malt, and from 187.02 to 518.40 U/kg in dry malt. The mean enzyme activity loss during kilning was close to 60%, very similar to the results obtained in other studies. The loss among genotypes varied from 8.04% to 71.54%. The enzyme activity varied significantly under the different environments tested, showing existence of environmental effects on the genotypes analyzed. Embrapa 127 was the genotype that exhibited the highest enzyme activity in finished malt although it had shown a low activity in green malt, reflecting a negligible loss of activity during kilning. The data indicate promising results to malting barley breeding due to the wide variability exhibited by genotypes as to enzyme activity and levels of isoenzyme with high thermostability. 相似文献
18.
19.