首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The malting and brewing characteristics of millets (Pennisetum typhoides and Digitaria exilis) and sorghum (Sorghum bicolor) were compared. Diastase, α-amylase, amyloglucosidase and proteases increased with malting time and the increase was associated with the modification. Development of hydrolytic enzymes was significantly higher in pearl millet and Digitaria exilis (“acha”) than in sorghum at P ≥ 0.01. The major starch degrading enzyme in the three varieties of pearl millet (SE composite, SE.13 and SE 2124) was α-amylase. On the other hand, β-amylase was the major starch degrading enzyme in “acha” (Digitaria exilis) which is similar to the pattern in barley. Gibberellic acid had a stimulating effect on the diastatic activity of pearl millets, Digitaria exilis (“acha”) and sorghum (KSV-4), but inhibited the diastatic activities of sorghum (Farafara). Gibbereltic acid inhibited the proteolytic activities in all the pearl millet varieties, Digitaria exilis and sorghum varieties. Potassium bromate had little or no effect in the reduction of malting losses. Although “acha” (Digitaria exilis) had a high β-amylase content, a high malting loss makes it uneconomical to brew with “acha” mart. A blend of “acha” malt with pearl millet malt or sorghum malt (composite malt) will produce a malt of the same profile as barley malt and this will enhance the quality of sorghum and pearl millet malt during the mashing process. Wort quality of all the samples was suitable for brewing conventional beer.  相似文献   

2.
The effect of malting conditions on pearl millet malt quality in two varieties, SDMV 89004 and SDMV 91018, was investigated. Grain was steeped and germinated at four temperatures, 20°, 25°, 30° and 35°C, over 5 days. Generally, malt quality parameters (percentage of roots and shoots, diastatic power (DP), α‐ and β‐amylase activity, free α‐amino nitrogen (FAN), and malting loss) were significantly affected (P < 0.001) by germination temperature and time, as well as by variety. Malt FAN and malting loss were not affected by variety. A germination temperature of 25–30°C and germination time of 3–5 days were optimal. These conditions resulted in high DP, α‐ and β‐amylase activity, good FAN and moderate malting loss. These malting conditions and the subsequent malt quality of pearl millet are similar to those reported for sorghum. Pearl millet malt can therefore be used for the production of sorghum type beers.  相似文献   

3.
The metabolism of albumin, globulin, glutelin and prolamin in two varieties of sorghum recommended as alternatives to barley malt for brewing in Nigeria has been studied. There was a continuous degradation of prolamin and glutelin (storage proteins) with a concomitant rise in albumin and globulin (enzyme proteins) resulting in a synchronous rise in free amino nitrogen (FAN) during malting of SK 5912. On the other hand, all the major proteins in farafara increased at the peak of malting without a synchronous increase in FAN. When compared to the unmalted sorghum digested with external enzymes, only a quarter to half of the groups of amino acids required for yeast nutrition were obtained with malted sorghum. The production of FAN in SK 5912 malt is higher than farafara malt. FAN produced in SK 5912 malt is high enough for lager beer production therefore its recommendation as a local substitute is supported, in part, by this study. © 1997 SCI.  相似文献   

4.
Initially, large‐scale lager beer brewing with sorghum malts proved highly intractable due to a number of biochemical problems including: high malting losses estimated at 10–30% as against 8–10% for barley; high gelatinisation temperatures which limited starch solubilisation/ hydrolysis by the amylolytic enzymes during mashing; low extract yield/low diastatic power (DP) due to inadequate hydrolytic enzyme activities especially β‐amylase; low free α‐amino nitrogen (FAN) due to inadequate proteolysis limiting yeast growth during fermentation; high wort viscosities/beer filtration problems due to low endo‐β‐1,3; 1–4‐glucanase activities on the endosperm cell walls causing the release of some β‐glucans. Strident research efforts using improved Nigerian sorghum malt varieties (SK5912, KSV8 and ICSV400) have reported some encouraging results. The knowledge of the biochemical integrity of the endo‐β‐glucanases of the sorghum malt is helping to elucidate their mode of activity in the depolymerisation of the β‐glucans. This is bound to ensure process efficiency in sorghum beer brewing, reduce beer production costs and ultimately, produce a Pilsner‐type of lager beer with 100% sorghum malt.  相似文献   

5.
A sorghum variety was supplied as commercial malt and as an unmalted cereal by a maltster. The commercial sample had been malted in a tropical country. Sub‐samples of the unmalted cereal were malted in the laboratory under controlled germination temperatures of 28°C and 30°C. Laboratory and commercially malted sorghum were studied for their brewing qualities. The α‐amylase development in sorghum malt was enhanced when germination was carried out at the higher temperature of 30°C rather than at 28°C. Hot water extract (HWE) was more variable. With infusion mashing, results showed a significant difference for germination time (3–6 days), but no significant difference relating to germination temperature. With the decantation mashing method the reverse was observed. The low numerical values of HWE obtained from sorghum malt in the infusion mashing process confirmed that this process is not suitable to produce optimal extract development from malted sorghum. The 28°C germinated sorghum released more FAN products into the worts than the 30°C malt, using both the infusion and decantation methods. With regard to the parameters tested, commercially malted sorghum gave lower analytical values than laboratory malted sorghum. It was also observed that variations in malting temperatures and mashing processes can cause unexpected variations in the analyses of sorghum malt. These findings suggest that careful process control is required during the malting and mashing of sorghum.  相似文献   

6.
Unlike barley which possesses β-amylase activity before germination, sorghum grain is devoid of this enzyme. Both α- and β-amylase are produced during the germination of sorghum and, in any particular malting trial, the ratio of the enzymes to one another remains approximately constant throughout the trial. The actual value at which the ratio remains constant depends on the temperature of the malting and the variety but not on the watering treatment given during malting. The amylase concentration in the embryo is usually higher than in the endosperm but the total amount of amylase in the embryo is much less than in the endosperm. Although the embryo of sorghum is a minor contributor to the total amylase, it contributes more thsn does the embryo of barley to barley malt. The ratio of α- to β-amylase in the embryo differs from that found in the endosperm. In Short Red kaffircorn, a common malting variety, the embryo contained ii significantly lower percentage of αamylase than the endosperm. The opposite was found with the Birdproof and Sugar Drip varieties, the embryo being the richer in αamylase.  相似文献   

7.
Studies on the malting physiology of barley have led to similar studies on millet and sorghum. This study compares the outcomes of the malting physiology of millet, sorghum and barley. Results show that optimal development of diastatic power, soluble nitrogen, hot water extract and the wide range of amino acids of these three cereals is related to optimal malting conditions and appropriate mashing procedures. Transfer of the nitrogen/extract/soluble nitrogen/diastatic concepts of barley malt do not apply to millet and sorghum. However, all the cereals studied produced the range of amino acids required by yeast for fermentation. Sorghum malt released the highest amounts of group 1 amino acids, usually taken up faster by yeast. It also produced and released the highest amounts of amino acids, classified as group 2, which are assimilated more slowly than group 1 amino acids. It also produced and released more of the amino acids that are slowest to be assimilated during fermentation, as well as very high levels of proline. Optic barley malt produced and released the least amount of proline. The fate of proline during yeast fermentation is not clear, but it is believed that proline is not utilized during fermentation. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

8.
Mainstream lager beer brewing using the tropical cereals sorghum, maize and rice, either as malt or as raw grain plus commercial enzymes, is becoming widespread. This review examines the differences in composition between these tropical cereals and barley and their impact on brewing processes and beer quality. All of these cereals have a starch gelatinization temperature some 10 °C higher than barley. The sorghum prolamin proteins are particularly resistant to proteolysis owing to disulphide cross‐linking involving γ‐kafirin. Unlike barley, the major endosperm cell wall components in sorghum and maize are arabinoxylans, which persist during malting. The rice cell walls also seem to contain pectic substances. Notably, certain sorghum varieties, the tannin‐type sorghums, contain considerable levels of condensed tannins (proanthocyanidins), which can substantially inhibit amylases, and probably also other brewing enzymes. Tropical cereal malts exhibit a similar complement of enzymic activities to barley malt, with the notable exception of β‐amylase, which is much lower and essentially is absent in their raw grain. Concerning beer flavour, it is probable that condensed tannins, where present in sorghum, could contribute to bitterness and astringency. The compound 2‐acetyl‐1‐pyrroline, responsible for the popcorn aroma of maize and also the major aroma compound in rice, presumably affects beer flavour. However, much more research is needed into tropical cereals and beer flavour. Other future directions should include improving hydrolysis of prolamins into free amino nitrogen, possibly using prolyl carboxypeptidases and investigating tropical cereal lines with useful novel traits such as high amylopectin, high protein digestibility and low phytate. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

9.
In sorghum brewing, obtaining sufficient Free Amino Nitrogen (FAN) for rapid and complete fermentation remains a problem due to the high proportions of unmalted sorghum used and the poor digestibility of wet‐heat treated sorghum protein. Sorghum mutant lines with high protein digestibility have been developed through breeding. These high protein digestibility sorghums (HPDS) have protein bodies with villi‐like borders that apparently facilitate protease access. This work investigated FAN production from HPDS when malted and mashed, to assess their potential for use in sorghum brewing to improve wort FAN levels. When malted, HPDS contained substantially higher levels of FAN than normal protein digestibility sorghums (NPDS), 32 mg/100 g malt more. However, when the HPDS were mashed either as malt, or as grain or malt plus exogenous proteases, FAN production during mashing was not substantially higher than with NPDS subjected to the same treatments, only 6, 6–18 and 9–13 mg/100 g grain or malt, respectively. This is probably due to wet‐heat induced cross‐linking of the kafirin proteins reducing their susceptibility to proteolysis. Notwithstanding this, HPDS could be very useful for improving FAN levels in sorghum brewing if they are malted.  相似文献   

10.
Beer, a beverage frequently requested by celiac patients, is toxic to them due the gluten content derived from traditional raw materials used in the brewing process. To understand a possible alternative use of cereals and pseudo‐cereals, micro‐malting experiments on sorghum, buckwheat, quinoa and amaranth were performed using different malting parameters to study their brewing behaviour. Steeping in dilute NaOH solution was one parameter employed to understand any possible positive effect on malt quality. Alkaline steeping has been applied to pseudo‐cereals for the first time and often showed an increase in total soluble nitrogen (TSN) and free amino nitrogen (FAN), especially with buckwheat, where two results showed the TSN content increased by about 500 and 1,000 mg/L. An interesting result was found with amaranth fermentability, which showed a fermentability of 56%, higher than what was previously reported. From these positive results for malt quality, it is possible to affirm that the cereals and pseudo‐cereals investigated in this study could be employed for gluten‐free beer production. Furthermore, the alkaline steeping seems to be a useful process variable for optimisation of malt quality. Future studies about its effect on the diastatic power could be conducted.  相似文献   

11.
The low β‐amylase activity of sorghum malt is a major concern when malts are intended for use in brewing. Several studies have shown that the germination temperature plays an important role in β‐amylase synthesis. In this study, the cold shock treatment was envisioned as a means of improving β‐amylase synthesis during red sorghum malting. The results show that, when a high‐frequency decrease in the germination temperature is used, the obtained malt exhibits a significantly increased β‐amylase activity. This study shows that this increase is not sufficient to consider cold shock as a means of improving β‐amylase activity for red sorghum brewing use, as the processabilty of the malts is unsatisfactory. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

12.
Prediction of malt fermentability (apparent attenuation limit — AAL) by measurement of the diastatic power enzymes (DPE), α‐amylase, total limit dextrinase, total β‐amylase, β‐amylase thermostability, and the Kolbach index (KI or free amino nitrogen — FAN) is superior to the conventional use of diastatic power (DP) alone. The thermostability of β‐amylase is known to be an important factor in determining fermentability, thus the thermostability of the other relatively thermolabile enzyme, limit dextrinase, was investigated to determine if it was also useful in predicting fermentability. To facilitate this aim, methods were developed for a rapid and cost efficient assay of both β‐amylase and limit dextrinase thermostability. Internationally important Australian and international malting varieties were compared for their total limit dextrinase and β‐amylase activity and thermostability. Interestingly, the level of limit dextrinase thermostability was observed to be inversely correlated with total limit dextrinase activity. The prediction of malt fermentability was achieved by both forward step‐wise multi‐linear regression (MLR) and the partial least squares (PLS) multivariate model development methods. Both methods produced similar identifications of the parameters predicting wort fermentability at similar levels of predictive power. Both models were substantially better at predicting fermentability than the traditional use of DP on its own. The emphasis of this study was on the identification of predictive factors that can be consistently used in models to predict fermentability, because the model parameter estimates will subtly vary depending on mashing conditions, yeast strain/fermentation conditions and malt source. The application of these multivariate model development methods (PLS and MLR) enabled the identification of further potential fermentability predicting factors. The analyses divided the predictive parameters into those defined by DP enzymes and those associated with modification (KI, FAN, fine/coarse difference, wort β‐glucan and friability). Surprisingly, limit dextrinase thermostability was not a substantial predictor of fermentability, presumably due to its negative correlation with total limit dextrinase activity. The application of these insights in the malting and brewing industries is expected to result in substantial improvements in brewing consistency and enable more specific quality targets for barley breeder's progeny selection cut‐off limits to be more precisely defined.  相似文献   

13.
A new malting barley variety, Lofty Nijo, was bred in Australia through a collaborative breeding program between a Japanese brewing company and Adelaide University. The variety is early flowering and maturing, with similar yield potential to Schooner except in lower rainfall areas, and is not zinc efficient. It produces plump grains with low screenings similar to Schooner and more uniform and plumper grains than Franklin. Lofty Nijo has a well‐balanced malting quality profile. It shows high values in malt extract, diastatic power, apparent attenuation limit and Hartong index (VZ45) and low values in wort beta‐glucan and viscosity. The Kolbach index of this variety is lower than Schooner and Sloop, however, it is higher than Franklin. A pilot‐scale brewing trial indicated that Lofty Nijo is as suitable for Japanese brewing as the world's leading varieties, such as Franklin. Lofty Nijo should therefore offer a premium malting barley variety in Australia for export markets. The breeding, agronomic performance and quality profile of the variety is described in this paper.  相似文献   

14.
Enzymic breakdown of endosperm proteins of sorghum was more effective at 20°C than at 25°C and 30°C, as regards total protein solubilization, α-amino nitrogen and peptide production. Although the embryos (axes and scutella), of the three temperature treatments contained similar quantities of protein, it appeared that less proteins, in terms of amino acids and peptides, were transferred to the roots during malting at 30°C than at 25°C and 20°C. During mashing, higher levels of peptides but lower levels of α-amino nitrogen and total soluble nitrogen were released in an infusion mash at 65°C than in a decantation mash where enzymically active wort was decanted and used to mash gelatinized sorghum starch at 65°C. Although more of the maltose-producing enzyme—β—amylase was found in sorghum malts made at 25°C and 30°C than at 20°C, it would seem that, for sorghum, malting temperature of 20°C to 25°C were optimal as regards protein breakdown during malting. The protein breakdown produced when sorghum is malted at 20°C is comparable to that found in barley malt and should support similar levels of adjuncts and yeast growth during brewing.  相似文献   

15.
Sulphuric acid dehusked barley had a higher germinative energy and lower microbial infection than normal huskless (naked) barley, suggesting that the pericarp layer harboured microbial infection which may have limited the germination rate. Dehusking the normal huskless barley using sulphuric acid resulted in lower microbial infection, and increased germinative energy. The normal huskless barley sample had a higher β‐glucan content than the acid‐dehusked barley and had slower β‐glucan breakdown during malting. This resulted in the release of seven times more β‐glucan during mashing, and the production of wort of higher viscosity. The normal huskless barley sample had a higher total nitrogen content than the acid‐dehusked barley but both samples produced similar levels of amylolytic (α‐ and β‐amylase) activity over the same malting period. No direct correlation was found between barley total nitrogen level and the amylolytic activity of the malt. When barley loses its husk at harvest, the embryo is exposed and may be damaged. This may result in uneven germination which can reduce malting performance and hence malt quality.  相似文献   

16.
Brewery fermentations require continuous yeast growth to efficiently convert fermentable sugars to ethanol. Yeast growth is dependent on an adequate supply of nutrients, including minerals. Minerals are generally assured in the brewery with addition of nutrient supplements but reduced phytate barley malts could reduce the need for supplements. The present study used bulked segregant analysis to determine effects of the reduced phytate trait in barley on field performance, barley quality, malting quality and brewing performance. Two bulks from a doubled haploid population, along with a series of normal and reduced phytate controls, were grown at 3 to 5 western Canadian sites in 2006, 2007 and 2008. The normal and reduced phytate barley bulks had similar yields, but the reduced phytate barley had significantly lower test weight. Rates of endosperm modification were similar between the two phytate types, although, reduced phytate malt was significantly more friable. Malt extract and α‐amylase levels were significantly lower in the reduced phytate bulk. Zinc and magnesium levels were significantly higher in reduced phytate worts and these worts produced better yeast growth as indicated by greater amino acid use during fermentation. Brewing performance tended to be better with reduced phytate worts, but not consistently so, likely due to the lower levels of malt extract and α‐amylase. Results supported the incorporation of the reduced phytate trait into malting barley varieties, but with attention to breeding for improved test weight and levels of α‐amylase.  相似文献   

17.
The malting characteristics of the finger millet variety Imele (FI), sorghum varieties Andivo (SA) and Ingumba (SI) and the barley variety Research (BR) were compared in relation to the brewing of traditional African opaque beer as well as conventional lager beer. The investigations include (a) the effect of steeping and germination conditions, (b) the influence of gibberellic acid and kilning temperature on the activity of important brewing enzymes and (c) an appraisal of the brewing potential of the worts obtained. FI, SA and SI malts were considered unsuitable as barley malt extenders for conventional lager beers, but FI and possibly SI malts would be suitable for tropical lager beer manufacture.  相似文献   

18.
Ten pearl millet cultivars and sorghum (control) were steeped for 12 hours with one hour air rest and germinated for 96 hours. The germinative properties and steep-out moisture content of the grain were determined. Green malt moisture, malting loss, vegetative loss, total malting loss, and diastatic power were also determined during germination at intervals of 24 hours. Data obtained from the study were statistically analyzed using analysis of variance of a randomized complete design and 11 × 5 factorial experiments to determine differences among germination time and cultivar. Means were separated using Duncan Multiple Range Test. Correlation analysis was determined with computer using statistix, version 4.1. Results indicated that grains had good germinative properties and wide variations of steep-out moisture content among the cultivars. Green malt moisture, metabolic loss (malting loss), vegetative loss (seedling yield), total malting loss, and diastatic power increased significantly (P < 0.05) with an increase in germination time and varied widely among cultivars. This information could serve as a guide for selection of suitable pearl millet cultivars for malting.  相似文献   

19.
The activities of barley and malt proteinases have been measured using haemoglobin and the highly degradable barley protein fraction (HDBPF) in malting and feed barley varieties. In conjunction, the barley and malt total protein and its components: hordein, glutelin, soluble proteins and free amino nitrogen (FAN) as well as Kolbach index were investigated. The comparative analysis of results revealed that the general grain modification index of Kolbach (KI), which was higher in malting varieties, was much more strongly associated with the levels of hordein degraded during malting than any other parameter investigated. The KI levels were also correlated with the increase in the levels of FAN, but not with the increase in the levels of soluble protein or changes in the glutelin component. The changes in total proteinase activity were low and cannot account for the increase in KI or the degraded hordein. The levels of total proteinase activity in both feed and malting barley varieties were similar. The results suggest that estimation of the levels of degraded hordein, during malting, is a sensitive indicator of the total proteolytic action of proteinases as well as the degradability of the reserve proteins. Therefore, we recommend measuring the amounts of hordein degraded during malting for the assessment of the impacts of grain protein and proteinases on malting barley quality of different varieties, in addition to KI and FAN.  相似文献   

20.
Abstract

The substitution of sorghum for barley malt is a successful indigenous technology capability (ITC) development in the brewing industry in Nigeria. However, this ITC was accompanied by milling, mashing, and lautering problems. The milling problem was solved by adapting the existing barley malt cleaner to sorghum grain at no cost. The use of external enzymes and installation of a mash filter eliminated the mashing and lautering problems. However, the use of malted sorghum, with a simple modification of the existing line without the addition of external enzymes, could solve these problems at reduced cost. A brewery wishing to adopt this process should have a malting plant to guarantee the quality and steady supply of malt. Such a malting plant of 6000 tonnes annual capacity and operating at full capacity could generate additional internal rate of return (IRR) of 32.5%, which is greater than the existing bank interest rate (13%). The policy which emphasized the use of local raw material is very effective in the brewing industry in Nigeria. However, the government should pursue the policy on the production of steel products which are essential for the fabrication of food‐processing facilities to enhance ITC development in the industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号