首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
工业生产过程中产生大量的各种工业废酸,其中酸洗废液是重要的工业废酸之一,主要来源于电路板刻蚀、管材酸洗以及金属表面处理等行业的酸洗过程,其中含少量铁盐的低浓度废酸可以通过回收利用达到保护环境和节约资源的双重目的。针对低浓度废盐酸的资源化利用问题,本文通过搭建精馏塔实验平台,以蒸汽为供热源,进行了低浓度废盐酸间歇精馏操作实验。实验测定了HCl-H2O体系的相对挥发度和气、液相平衡数据,研究了不同时间下塔釜、塔顶温度场和浓度场的分布情况以及不同的初始溶液浓度、回流比等操作参数对间歇精馏过程的影响,并对整个系统进行了有效能分析,探究能量损失的主要原因。研究结果表明:当实验达到稳定运行状态时,随着加热时间的延长,塔釜酸液浓度缓慢上升接近某一个特定值,测得其质量分数为18.2%,塔顶馏出液pH维持在5.5左右,验证了该精馏塔装置浓缩低浓度稀盐酸的可行性。该系统有效能的效率为43.94%,需要进一步对系统进行能量优化和系统改进,以提高其能量效率。  相似文献   

2.
The blast‐furnace process dominating in the production of steel all over the world is still continuously improved due to its effectiveness (exergy efficiency is about 70%). The thermal improvement consist in an increase of the temperature of the blast and its oxygen enrichment, as well as the injection of cheaper auxiliary fuels. The main aim is to save coke because its consumption is the predominating item of the input energy both in the blast‐furnace plant and in ironworks. Besides coke also other energy carriers undergo changes, like the consumption of blast, production of the chemical energy of blast‐furnace gas, its consumption in Cowper‐stoves and by other consumers, as well as the production of electricity in the recovery turbine. These changes affect the whole energy management of ironworks due to the close connections between energy and technological processes. That means the production of steam, electricity, compressed air, tonnage oxygen, industrial water, feed water undergo changes as well. In order to determine the system changes inside the ironworks a mathematical model of the energy management of the industrial plant was applied. The results of calculations of the supply of energy carriers to ironworks can then be used to determine the cumulative energy and exergy consumption basing on average values of cumulative energy and exergy indices concerning the whole country. Such a model was also used in the system analysis of exergy losses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The concept of exergy has been introduced to establish a universal standard for quality and efficient use of energy. In this work, applications of this concept to compression, heat exchange, and separation processes, in addition to the computation of their irreversibility rate and thermodynamic efficiency, are considered. An industrial case study on the purification of 1,2-ethylenedichloride (EDC) in a high-purity distillation column is presented. Due to its large throughput, this distillation column consumes a large amount of thermal energy (steam to the reboiler) and in order to reduce the energy requirements without large process modifications, a new configuration using a vapour compression heat pump is proposed which yields considerable improvement in the use of energy. Both configurations were implemented using the commercial simulator Aspen Plus™; the results of the original configuration were validated with data extracted from the plant. The objective of this work was to compare the original configuration and the new proposed one, from a thermodynamic approach. Furthermore, two forms of process thermodynamic analysis based on the concept of exergy were applied to the new proposed configuration.  相似文献   

4.
《Energy》2005,30(2-4):111-117
When we consider exergy analysis on combustion and thermodynamic processes, we introduce another concept against energy analysis, which is supported by an evaluation of its temperature level. When a higher temperature energy than that an ambient level is taken into consideration, it can be put for some domestic or industrial purpose. A medium temperature energy of 30–60 °C is used for domestic heating, and a high temperature of 200 °C and above is suitable for power generation or process heating. Therefore, we study exergy concept supported by temperature level. When we discuss power generation, a high temperature energy of 1500 °C and above in combined cycle has a higher conversion efficiency than that of 500–600 °C in steam cycle. If we try to apply high temperature air combustion, a preheated air temperature of 1000 °C and above can be produced by exhaust heat recovery from stack gas, which has been developed as a new technology of energy conservation. In this study, the authors present an exergy analysis on combustion and energy conversion processes, which is based on the above-mentioned concept of exergy and energy supported by temperature level. When we discuss high temperature air combustion in furnace, this process shows a higher performance than that of the ambient air combustion. Furthermore, when we discuss the power generation and heat pump processes, the minimum ambient temperature would already be known for each season, and the conversion performance can be estimated by the maximum operating temperature in their cycles. So, the authors attempt to calculate the exergy and energy values for combustion, power generation and heat pump processes.  相似文献   

5.
With the popularization of distributed energy systems among end users, the number of prosumers is increasing, and more agents now have the ability to produce energy commodities for themselves to consume or sell. The community energy market (CEM), which comprises local inhabitants and energy‐related organizations, is shaped by the energy trade among different stakeholders within the community. In this case, a credible measure of value to judge the different types of energy is necessary to analyse the performance of the energy conversion system and determine the price of energy commodities. In this discussion, a typical multi‐energy system in a CEM is proposed as a targeted case, and physical products, energy, exergy, emergy, and currency serving as universal equivalents are compared and discussed in a case study. The results show that the superiority of low‐grade heat energy in the design of the energy system of prosumers and in terms of market value is clear. The feasibility of hot/chilled water, which is selected as a universal equivalent for multi‐energy system design and energy merchandise trade in the CEM, is emphasized. This research discusses the feasibility of low‐grade heat energy as a universal equivalent in a CEM based on house heating and cooling, which is a preliminary exploration for a proper universal equivalent in CEMs.  相似文献   

6.
Problem of high energy use for heating in Slovenian buildings is analyzed with exergy and energy analysis. Results of both are compared and discussed. Three cases of exterior building walls are located in three climatic zones in winter conditions. Results of energy analyses show that the highest heating energy demand appears in the case with less thermal insulation, especially in colder climate. If the comparison is made only on the energy supply and exergy supply, the results of exergy analysis are the same as those of energy analysis. The main difference appears, if the whole chain of supply and demand is taken into consideration. Exergy calculations enable us to analyze how much exergy is consumed in which part, from boiler to building envelope. They also reveal how much energy is supplied for the purpose of heating. Results show that insulation has much bigger effect than effect of boiler efficiency. However, the most effective solution is to improve building envelope together with boiler efficiency. Better thermal insulation also makes an important contribution to the improvement of thermal comfort conditions. It causes higher surface temperatures resulting in a larger warm radiant exergy emission rate and consequently better thermal comfort.  相似文献   

7.
Energy and exergy analysis were carried out for a combined‐cycle power plant by using the data taken from its units in operation to analyse a complex energy system more thoroughly and to identify the potential for improving efficiency of the system. In this context, energy and exergy fluxes at the inlet and the exit of the devices in one of the power plant main units as well as the energy and exergy losses were determined. The results show that combustion chambers, gas turbines and heat recovery steam generators (HRSG) are the main sources of irreversibilities representing more than 85% of the overall exergy losses. Some constructive and thermal suggestions for these devices have been made to improve the efficiency of the system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Exergy efficiency analysis tool is used to evaluate sorption enhanced steam reforming in comparison with the industrial hydrogen production route, steam reforming. The study focuses on hydrogen production for use in high pressure processes. Thermodynamic sensitivity analysis (effect of reforming temperature on hydrogen yield and reforming enthalpy) was performed to indicate the optimum temperature (650 °C) for the sorption enhanced reforming. The pressure was selected to be, for both cases, 25 bar, a typical pressure used in the industrial (conventional) process. Atmospheric pressure, 1000 °C and CO2 as inert gas were specified as the optimum operating parameters for the regeneration of the sorbent after performing exergy efficiency analysis of three realistic case scenarios. Aspen Plus simulation process schemes were built for conventional and sorption enhanced steam reforming processes to attain the mass and energy balances required to assess comparatively exergy analysis. Simulation results showed that sorption enhanced reforming can lead to a hydrogen purity increase by 17.3%, along with the recovery of pure and sequestration-ready carbon dioxide. The exergy benefit of sorption enhanced reforming was calculated equal to 3.2%. Analysis was extended by adding a CO2 separation stage in conventional reforming to reach the hydrogen purity of sorption enhanced reforming and enable a more effective exergy efficiency comparison. Following that analysis, sorption enhanced reforming gained 10.8% in exergy efficiency.  相似文献   

9.
In this paper, a detailed review is presented to discuss biomass‐based hydrogen production systems and their applications. Some optimum hydrogen production and operating conditions are studied through a comprehensive sensitivity analysis on the hydrogen yield from steam biomass gasification. In addition, a hybrid system, which combines a biomass‐based hydrogen production system and a solid oxide fuel cell unit is considered for performance assessment. A comparative thermodynamic study also is undertaken to investigate various operational aspects through energy and exergy efficiencies. The results of this study show that there are various key parameters affecting the hydrogen production process and system performance. They also indicate that it is possible to increase the hydrogen yield from 70 to 107 g H2 per kg of sawdust wood. By studying the energy and exergy efficiencies, the performance assessment shows the potential to produce hydrogen from steam biomass gasification. The study further reveals a strong potential of this system as it utilizes steam biomass gasification for hydrogen production. To evaluate the system performance, the efficiencies are calculated at particular pressures, temperatures, current densities, and fuel utilization factors. It is found that there is a strong potential in the gasification temperature range 1023–1423 K to increase energy efficiency with a hydrogen yield from 45 to 55% and the exergy efficiency with hydrogen yield from 22 to 32%, respectively, whereas the exergy efficiency of electricity production decreases from 56 to 49.4%. Hydrogen production by steam sawdust gasification appears to be an ultimate option for hydrogen production based on the parametric studies and performance assessments that were carried out through energy and exergy efficiencies. Finally, the system integration is an attractive option for better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Cement production has been one of the most energy intensive industries in the world with energy typically accounting about 30-40% of the production costs. Reduction of the production cost is very much important. Therefore, many studies on the efficient use of energy were carried out in the past. Moreover, these studies, which are based on exergy analysis, focus on industrial applications only. This paper reviewed exergy analysis, exergy balance, and exergetic efficiencies for cement industry. It is found that the exergy efficiency for cement production units ranges from 18% to 49% as well as the exergy losses due to the irreversibility from kiln are higher than other units in cement production plant.  相似文献   

11.
目的  为研究压水堆核电站为周边工业区提供工业用蒸汽的技术可行性。 方法  以某1 000 MW压水堆核电厂主蒸汽为热源,为周边提供工业蒸汽需求量300 t/h,蒸汽压力为1.8 MPa,蒸汽温度为250 ℃为例,论证了利用压水堆核电站二回路蒸汽加热工业用水产生满足工业需求的蒸汽转换系统的技术可行性。从热力学第一定律和第二定律理论出发,设计了该系统的工艺流程,计算了系统中关键换热设备的热力参数。 结果  得出热源疏水温度的合理值为65 ℃,如疏水温度低于60 ℃,在二级预热器中将出现热源温度低于工业水温度的情况,将违背热力学第二定律。 结论  研究成果可为压水堆核电站工业供汽提供技术参考。  相似文献   

12.
An integrated process of biomass gasification and solid oxide fuel cells (SOFC) is investigated using energy and exergy analyses. The performance of the system is assessed by calculating several parameters such as electrical efficiency, combined heat and power efficiency, power to heat ratio, exergy destruction ratio, and exergy efficiency. A performance comparison of power systems for different gasification agents is given by thermodynamic analysis. Exergy analysis is applied to investigate exergy destruction in components in the power systems. When using oxygen-enriched air as gasification agent, the gasifier reactor causes the greatest exergy destruction. About 29% of the chemical energy of the biomass is converted into net electric power, while about 17% of it is used to for producing hot water for district heating purposes. The total exergy efficiency of combined heat and power is 29%. For the case in which steam as the gasification agent, the highest exergy destruction lies in the air preheater due to the great temperature difference between the hot and cold side. The net electrical efficiency is about 40%. The exergy combined heat and power efficiency is above 36%, which is higher than that when air or oxygen-enriched air as gasification agent.  相似文献   

13.
Growing the consumption of fossil fuels and emerging global warming issue have driven the research interests toward renewable and environmentally friendly energy sources. Biomass gasification is identified as an efficient technology to produce sustainable hydrogen. In this work, energy and exergy analysis coupled with thermodynamic equilibrium model were implemented in biomass gasification process for production of hydrogen. In this regard, a detailed comparison of the performance of a downdraft gasifier was implemented using air, steam, and air/steam as the gasifying agents for horse manure, pinewood and sawdust as the biomass materials. The comparison results indicate that the steam gasification of pinewood generates a more desired product gas compositions with a much higher hydrogen exergy efficiency and low exergy values of unreacted carbon and irreversibility. Then the effects of the inherent operating factors were investigated and optimized applying a response surface methodology to maximize hydrogen exergy efficiency of the process. A hydrogen exergy efficiency of 44% was obtained when the product gas exergy efficiency reaches to the highest value (88.26%) and destruction and unreacted carbon efficiencies exhibit minimum values of 7.96% and 1.9%.  相似文献   

14.
In complicated systems, such as a highly integrated industrial plant with its own energy production, estimating the value of energy conservation is not so straightforward. Often, heat is priced using different kinds of methods for allocating the fuel cost to heat and electricity. However, there is no consistent way to valuate the process steam in industry, and not just one useful method for allocating costs to heat and power. In this paper, the energy method, exergy method, benefit distribution method and market‐based method are evaluated and compared from different decision‐making perspectives. The results of this study indicate that the allocation methods may overestimate by up to 200–300% the benefits from the mill perspective compared to the benefits from the mill site perspective. So, the most suitable method may vary, depending on the selected system boundary, i.e. the decision‐making perspective, the type of CHP plant and energy prices. Based on the results of this study, the exergy method fits well with the CCGT plant with a condensing unit and constant fuel input. On the other hand, the market‐based method is the most correct way to estimate the value of heat when heat conservation reduces the production of CHP electricity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Gasification is a thermo-chemical reaction which converts biomass into fuel gases in a reactor. The efficiency of conversion depends on the effective working of the gasifier. The first step in the conversion process is the selection of a suitable feedstock capable of generating more gaseous fuels. This paper analyses the performance of different biomasses during gasification through energy and exergy analysis. A quasi-equilibrium model is developed to simulate and compare the feasibility of different biomass materials as gasifier feedstock. Parametric studies are conducted to analyze the effect of temperature, steam to biomass ratio and equivalence ratio on energy and exergy efficiencies. Of the biomasses considered, sawdust has the highest energy and exergy efficiencies and lowest irreversibility. At a gasification temperature of 1000 K, the steam to biomass ratio of unity and the equivalence ratio of 0.25, the energy efficiency, exergy efficiency and irreversibility of sawdust are 35.62%, 36.98% and 10.62 MJ/kg, respectively. It is also inferred that the biomass with lower ash content and higher carbon content contributes to maximum energy and exergy efficiencies.  相似文献   

16.
Sugarcane is one of the most important industries of the Brazilian economy, and its main products are sugar and ethanol. Most of the industrial plants produce both products in an integrated process, in which the sugarcane bagasse is a by-product that can be used as a fuel in the cogeneration system. The bagasse is used as the only fuel of the plant, supplying all energy required for the process, and also producing electricity surplus that may be sold to the grid. In this paper, exergy analysis is used to assess an integrated sugar and ethanol plant with its cogeneration system. The plant was divided into eight sub-systems to evaluate the irreversibility generation in each separately. Data from typical sugarcane factories in Brazil, which produce sugar and ethanol, were used in the process simulation. The analysis has shown that the sub-systems with the highest contribution for the total irreversibility generation of the plant were co-generation, juice extraction and fermentation. Some improvements are proposed, including process thermal integration and the introduction of more efficient equipments for prime mover and steam and electricity generation. The analysis indicated that the total irreversibility could be reduced by 10% should those changes be implemented.  相似文献   

17.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This article analyses exergy losses along hydrogen utilisation pathways recently discussed in Germany and other countries. As a renewable fuel hydrogen will be an important part of sustainable future economies. Hydrogen can be used in all sectors, especially in buildings, for mobility and in industry, e.g. in steel production or ammonia synthesis. However, hydrogen has to be produced in a sustainable way. The most promising production is via water electrolysis using renewable electricity. In the first part of this work, exergy analysis is made for the complete hydrogen pathways from production until final utilisation for energy supply in buildings. The second part will focus on pathways for mobility. In the third part, the results are compared with available alternatives to hydrogen such as direct use of electricity in building supply or mobility. The results for building energy supply show that firstly transportation in pipelines (mixture with natural gas and pure hydrogen) is very efficient. Secondly, major exergy losses are caused by the electrolyser. Thirdly, combustion of renewable hydrogen for room heating in common boilers cause the highest exergy losses, but the use of combined heat and power (CHP) units or fuel cells can improve the exergy efficiency substantially.  相似文献   

19.
Energy and exergy analyses of the Koppers-Totzek (KT) coal gasification process were performed. The KT process involves the partial oxidation of coal with oxygen and steam to produce a synthesis gas, and the treatment of the synthesis gas to yield hydrogen. The analyses were carried out using a process-simulation computer code which had been enhanced by the authors for exergy analysis. The exergy efficiency for the overall process was found to be 49%, and the energy efficiency 59%. The majority of energy losses was found to be associated with emissions of cooling water and stack gas. The majority of exergy losses was found to be due to internal consumptions, particularly within the gasification and steam generation systems. The losses associated with the cooling water and stack gas streams, although significant on an energy basis, are shown to be not that important on an exergy basis.  相似文献   

20.
A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy consumption and further improve the energy utilization. The performance evaluation criteria are calculated, and exergy analysis for key components are implemented in terms of the energy and exergy analysis theory. Besides, the change of these criteria is also revealed before and after modification. The net power output approximately increases by 21738 kW, and equivalent coal consumption decreases by 5.58 g/kWh. A 1.81% and 1.92% increase in the thermal and exergy efficiency is respectively obtained in the new integrated system as the heating load is 401095 kJ at 100% condition. Meanwhile, the appropriate extraction parameters for heating have been also analyzed in the two systems. The proposed scheme can not only save energy consumption but also reduce emission and gain great economic benefit, which is proven to be a huge potential for practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号