首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study is aimed to investigate the oscillation effects on the frost formation and the liquid droplet solidification on a cold plate in atmospheric air flow. A microscopic image system is used to observe the structure of the frost layer, and an electrodynamic shaker is designed to oscillate the cold plate at various amplitudes (D) and frequencies (f). The physical parameters considered in this study include the velocity, temperature, and relative humidity of the air (V, Ta, and φ), as well as the surface temperature of the cold plate (Tw), which is varied by adjusting the cooling refrigerant temperature (Tref). The ranges of the physical variables considered in this study are: 2V8 m/s, 18Ta30 °C, 40%φ70%, −18Tref (and Tw)0 °C, 40D100 μm, and 100f200 Hz.  相似文献   

2.
Convection heat transfer to spherical particles inside a hydrofluidisation freezing unit was investigated. The unit contained a food tank with a perforated bottom plate to create agitating jets. An aqueous solution of 30% ethanol+20% glucose was used as the refrigeration medium in a temperature range of −20 to 0 °C and flow rates from 5 to 15 l min−1. The lumped capacitance method was applied on cooling profiles of aluminium spheres of 5–50 mm to obtain surface heat transfer coefficients. Coefficients were within a range of 154–1548 W m−2 °C−1, and depended on diameter, flow rate, refrigeration temperature and fluid agitation level. The agitation due to jets was accounted for by means of an agitation Reynolds number in a Nusselt correlation A large variability of measured surface heat transfer coefficients was observed. This could be attributed to non-constant flow and turbulence fields in the refrigeration medium. The value of the heat transfer coefficient was compared to values determined on strawberries.  相似文献   

3.
An updated version of the Kattan–Thome–Favrat flow pattern based, flow boiling heat transfer model for horizontal tubes has been developed specifically for CO2. Because CO2 has a low critical temperature and hence high evaporating pressures compared to our previous database, it was found necessary to first correct the nucleate pool boiling correlation to better describe CO2 at high reduced pressures and secondly to include a boiling suppression factor on the nucleate boiling heat transfer coefficient to capture the trends in the flow boiling data. The new method predicts 73% of the CO2 database (404 data points) to within ±20% and 86% to within ±30% over the vapor quality range of 2–91%. The database covers five tube diameters from 0.79 to 10.06 mm, mass velocities from 85 to 1440 kg m−2 s−1, heat fluxes from 5 to 36 kW m−2, saturation temperatures from −25 °C to +25 °C and saturation pressures from 1.7 to 6.4 MPa (reduced pressures up to 0.87).  相似文献   

4.
In this study, the freezing time and rate of 1 cm3 cauliflower floret samples were determined under different freezing conditions in an air blast freezer. Four different air temperatures (−20, −25, −30 and −35°C) and six different air velocities (70, 131, 189, 244, 280 and 293 m min−1) were applied in the freezer, and the freezing rate and time of cauliflower pieces were determined under each condition. The freezing time of cauliflower samples frozen with cold air at −20°C and 280 m min−1 was similar to that of samples frozen with cold air at −35°C and 70 m min−1. When the velocity of air was increased from 70 m min−1 to 293 m min−1, the freezing time was approximately halved.  相似文献   

5.
This paper proposes a mathematical model to predict the frost properties and heat and mass transfer within the frost layer formed on a cold plate. Laminar flow equations for moist air and empirical correlations for local frost properties are employed to predict the frost layer growth. Correlations for local frost density and effective thermal conductivity of the frost layer, derived from various experimental data, are expressed as a function of the various frosting parameters: the Reynolds number, frost surface temperature, absolute humidity and temperature of the moist air, cooling plate temperature, and frost density. The numerical results are compared with experimental data to validate the proposed model, and those agree well with the experimental data within a maximum error of 10%. Heat and mass transfer coefficients obtained from the numerical analyses are also presented. The results show that the model for the frost growth using the correlation of the heat transfer coefficient without considering the air flow has a limitation in its application.  相似文献   

6.
The effect of air inlet humidity condition on the air-side heat transfer and pressure drop characteristics for an inclined brazed aluminum heat exchanger has been investigated experimentally. For a heat exchanger with a louver angle of 27°, fin pitch of 2.1 mm and flow depth of 27.9 mm, a series of tests are conducted for the air-side Reynolds numbers of 80–400, with variation of inlet humidity condition. The heat transfer data are obtained for wet condition only and the pressure drop data are measured for both dry and wet conditions. The inlet air temperature and relative humidity range are 12 °C and 60–90%, respectively. The inclination angles (θ) from the vertical position are 0, 14, 45, and 67° clockwise (leeward direction). The inclination angles affect moderately the sensible heat transfer coefficient for wet condition, and the pressure drops for both dry and wet conditions increase systematically with the inclination angle. The heat transfer and pressure drop characteristics under wet condition are not influenced substantially by the air inlet humidity for θ 45°. The effect of the louver directions at the inlet and outlet of the inclined heat exchanger on the performance is also addressed.  相似文献   

7.
This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m2 and 0.985 m2, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900–9500 W for all tests. Experiments were performed at constant condensing temperatures of 30 °C, 40 °C and 50 °C, respectively. The cooling water flow rate was maintained at 11.90 l min−1 for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations.  相似文献   

8.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

9.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

10.
A Micro-Slicer Image Processing System (MSIPS) has been applied to observe the ice crystal structures formed in frozen dilute solutions. Several characteristic parameters were also proposed to investigate the three-dimensional (3-D) morphology and distribution of ice crystals, based on their reconstructed images obtained by multi-slicing a frozen sample with the thickness of 5 μm. The values of characteristic parameters were determined for the sample images with the dimension of 530×700×1000 μm. The 3-D morphology of ice crystals was found to be a bundle of continuous or dendrite columns at any freezing condition. The equivalent diameter of ice crystals were in the range of 73–169 μm, and decreased exponentially with increasing freezing rate at the copper cooling plate temperature of −20 to −80 °C. At the Tcp −40 °C, the volumes of ice crystals were in the range of 4.6×104 μm3 to 3.3×107 μm3, and 36 ice columns were counted in the 3-D image.  相似文献   

11.
In this study, an experimental investigation is made of the anti-frosting performance of our newly developed anti-frosting paint. By coating the paint on a cold metal surface the onset of the frost formation may be delayed at least 15 min and the thickness of the deposited frost layer may be reduced by at least 40% and thus the weight of the deposited frost may be reduced by more than 40% compared with that on the uncoated copper surface. Under some preferable conditions (air relative humidity <60%, cold plate surface temperature >−10 °C), the coating surface can be kept free of frost at least for 3 h.  相似文献   

12.
This paper presents an overview of the issues and new results for in-tube condensation of ammonia in horizontal round tubes. A new empirical correlation is presented based on measured NH3 in-tube condensation heat transfer and pressure drop by Komandiwirya et al. [Komandiwirya, H.B., Hrnjak, P.S., Newell, T.A., 2005. An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of ammonia with and without miscible oil in smooth and enhanced tubes. ACRC CR-54, University of Illinois at Urbana-Champaign] in an 8.1 mm aluminum tube at a saturation temperature of 35 °C, and for a mass flux range of 20–270 kg m−2 s−1. Most correlations overpredict these measured NH3 heat transfer coefficients, up to 300%. The reasons are attributed to difference in thermophysical properties of ammonia compared to other refrigerants used in generation and validation of the correlations. Based on the conventional correlations, thermophysical properties of ammonia, and measured heat transfer coefficients, a new correlation was developed which can predict most of the measured values within ±20%. Measured NH3 pressure drop is shown and discussed. Two separated flow models are shown to predict the pressure drop relatively well at pressure drop higher than 1 kPa m−1, while a homogeneous model yields acceptable values at pressure drop less than 1 kPa m−1. The pressure drop mechanism and prediction accuracy are explained though the use of flow patterns.  相似文献   

13.
This study presents a mathematical model to predict the frosting behavior on a cold surface under turbulent flow. The model consists of the standard κε model for turbulent flow and the diffusion equation for the frost layer. The numerical results show that turbulent flow promotes the growth of the frost layer on the cold surface, compared to the laminar flow. Increase in air velocity has little effect on mass transfer under turbulent flow, while frost growth under laminar flow is influenced by the air velocity. With constant air humidity, the frost layer thickness increases with decreasing air temperature, while the relationship for the frost density is reversed. The effect of the air temperature on the mass flux is negligible, compared to the other frosting parameters.  相似文献   

14.
An experimental study for air-side thermal-hydraulic performance of brazed aluminum heat exchangers under dehumidifying conditions has been performed. For 30 samples of louvered fin heat exchangers with different geometrical parameters, the heat transfer and pressure drop characteristics for wet surface were evaluated. The test was conducted for air-side Reynolds number in the range of 80–300 and tube-side water flow rate of 320 kg/h. The dry- and wet-bulb temperatures of the inlet air for heat exchangers were 27 and 19 °C, respectively and the inlet water temperature was 6 °C. The air-side thermal performance data for cooling and dehumidifying conditions were analyzed using effectiveness-NTU method for cross-flow heat exchanger with both fluids unmixed. The test results are reported, compared with those for the dry surface heat exchangers, in terms of sensible j factor and friction factor f, as functions of Reynolds number based on louver pitch. The correlations for j and f factors are developed within rms errors of ±16.9 and ±13.6%, respectively.  相似文献   

15.
A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m−3), the heating production (MJ m−3) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent–refrigerant pair and heat flows. The simulation results of 26 various activated carbon–ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 °C to 200 °C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 °C; the cooling production is about 66 MJ m−3 (COP = 0.45) and 151 MJ m−3 (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m−3 (COP = 1.50).  相似文献   

16.
Strawberries were frozen at different air velocities in an air blast freezer at −30°C. The freezing time was taken as the time required to lower the temperature at the geometric centre of the samples to −10°C. The freezing times measured in the experiments were compared with the values calculated using Plank's equation. The freezing times calculated by Plank's equation were fround to be higher than those found experimentally at any given air velocity. Freezing time decreased with increasing air velocity. This is attributed to the increase in heat transfer coefficient at increased air velocities.  相似文献   

17.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

18.
In 1984 international research took place which compared the transport conditions of quick-frozen foods in thin-wall vehicles and conventional vehicles. This work was done at the request of the group of experts of the UNECE/TRANS/GE.11 in Geneva, Switzerland. In the Netherlands measurements have been carried out on three road vehicles — one conventional and two thin-wall vehicles — in the test station and on the road. The road transport involved taking a commercial cargo of frozen fish from Holland to Italy during the summer (July). Later on an additional test was performed in the test station with a fourth thin-wall vehicle at an ambient temperature of 30°C. The results show, that in the conventional vehicle, equipped with a bulk head and a ceiling air duct, and working on a temperature setting of −25°C, a maximum product temperature of −18°C could be maintained. The maximum temperature difference in the cargo was 6 K. Thin-wall vehicles appeared to have a temperature difference of 12 K between air inlet temperature and warmest product temperature. The maximum product temperature could be held below −12, −15 or −20°C, depending on the air distribution and, in particular, on the cooling power of the thermal appliance.  相似文献   

19.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

20.
Nuclate pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HCFC22, HFC125 and HFC32 on a horizontal smooth tube of 19.0 mm outside diameter have been measured. The experimental apparatus was specially designed to accomodate high vapor pressure refrigerants such as HFC32 and HFC125 with a sight glass. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 to 10 kW m−2 with an interval of 10 kW m−2 in the pool of 7 °C. Test results showed that HTCs of HFC125 and HFC32 were 50–70% higher than those of HCFC22 while HTCs of HCFC123 and HFC134a were similar to those of CFC11 and CFC12 respectively. It was also found that nucleate boiling heat transfer correlations available in the literature were not good for certain alternative refrigerants such as HFC32 and HCFC142b. Hence, a new correlation was developed by a regression analysis taking into account the variation of the exponent to the heat flux term as a function of reduced pressure and some other properties. The new correlation showed a good agreement with all measured data including those of new refrigerants of significantly varying vapor pressures with a mean deviation of less than 7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号