首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.  相似文献   

2.
A new approach to chemical vapour deposition (CVD) growth of carbon nanotubes (CNTs) using commercial magnetite nanoparticles, avoiding its in situ synthesis, is reported. Commercial magnetite nanoparticles were used as catalyst material to growth multiwalled carbon nanotubes by chemical vapour deposition onto a silicon substrate of several square centimeters in area. It is shown that the application of an alternating electric field during the deposition of catalytical nanoparticles is an effective technique to avoid their agglomeration allowing nanotube growth. Scanning electron microscopy showed that the nanotubes grow perpendicularly to the substrate and formed an aligned nanotubes array. The array density can be controlled by modifying the deposited nanoparticle concentration.  相似文献   

3.
Suzuki–Miyaura C–C coupling reactions were investigated with Pd/nitrogen-doped carbon nanotubes (Pd/N-CNTs) as a catalyst. Also, the same catalyst was examined for the solventfree oxidation of benzyl alcohol to benzaldehyde. Nitrogen-doped carbon nanotubes (N-CNTs) were synthesized from 1-ferrocenylmethyl(2-methylimidazole) and benzophenone via a chemical vapour deposition technique. Acetonitrile was used as a solvent and source of both carbon and nitrogen constituents of N-CNTs. Pd nanoparticles (Pd NPs) were successfully dispersed on N-CNTs via a metal organic chemical vapour deposition method. SEM, TEM, XRD, elemental analysis and ICP-OES measurements were used to characterize the nanomaterials. From the TEM analysis, it was observed that Pd NPs were spherical and with particle sizes ranging from 3 to 8 nm. For Suzuki C–C coupling reactions, phenylboronic acid, aryl halide, Pd/N-CNTs catalyst and a base (NaOAc, K2PO4, K2CO3, NaOH, Et3N and Na2CO3) were used. The optimized experiments indicate that K2CO3, as the base, and ethanol/water (1:1 v/v, 10 mL) mixture, as a solvent, are the best reaction conditions. The solventfree oxidation reactions of benzyl alcohol were also done with Pd/N-CNTs catalyst and benzyl alcohol as a substrate. In both sets of reactions, C–C coupling and oxidation, the increase in pyrrolic nitrogen species was found to be responsible for higher catalytic activities of Pd/N-CNT catalysts, and this was attributed to the ease of Pd NP dispersion on N-CNTs, relative to pristine CNTs. Also, the higher catalytic activity of Pd/N-CNTs could be ascribed not only to the smaller Pd NP size or surface area, but to also the surface properties and the nature of the support when compared with the undoped counterpart, Pd/CNTs.  相似文献   

4.
Kim JJ  Lee BJ  Lee SH  Jeong GH 《Nanotechnology》2012,23(10):105607
The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?°C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60?min at 900?°C produced a reduction of nanoparticle diameter from 2.6 to 1.8?nm and a decrease in the mean tube diameter from 1.2 to 0.8?nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.  相似文献   

5.
Since the 1970s, palladium-catalysed carbon–carbon (C–C) bond formation has made a critical impact in organic synthesis. In early studies, homogeneous palladium catalysts were extensively used for this reaction with limitations such as difficulty in separation and recycling ability. Lately, heterogeneous palladium-based catalysts have shown promise as surrogates for conventional homogeneous catalysts in C–C coupling reactions, since the product is easy to isolate, while the catalyst is reusable and hence sustainable. Recently, a better part of these heterogeneous palladium catalysts are supported on carbon nanotubes (Pd/CNTs), that have shown superior catalytic performance and better recyclability since the CNT support imparts stability to the palladium catalyst. This review discusses the wide variety of surface functionalization techniques for CNTs that improve their properties as catalyst supports, as well as the methods available for loading the catalyst nanoparticles onto the CNTs. It will survey the literature where Pd/CNTs catalysts have been utilized for C–C coupling reactions, with particular emphasis on Suzuki–Miyaura and Mizoroki–Heck coupling reactions. It will also highlight some of the important parameters that affect these reactions.  相似文献   

6.
Lai C  Guo Q  Wu XF  Reneker DH  Hou H 《Nanotechnology》2008,19(19):195303
This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)(2). Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures. Toluene, pyridine and chlorobenzine were employed as carbon sources for the carbon nanostructures. With the Pd nanoparticles embedded in the carbonized PAN nanofibers acting as catalysts, molecules of toluene, pyridine or chlorobenzine were decomposed into carbon species which were dissolved into the Pd nanoparticles and consequently grew into straight carbon nanotubes, Y-shaped carbon nanotubes or carbon nano-ribbons on the carbon nanofiber substrates. X-ray diffraction analysis and transmission electron microscopy (TEM) were utilized to capture the mechanism of formation of Pd nanoparticles, regular carbon nanotubes, Y-shaped carbon nanotubes and carbon nano-ribbons. It was observed that the Y-shaped carbon nanotubes and carbon nano-ribbons were formed on carbonized PAN nanofibers containing Pd-nanoparticle catalyst, and the carbon sources played a crucial role in the formation of different hierarchical carbon nanostructures.  相似文献   

7.
Pd nanoparticles of well-defined shapes with face centered cubic structure were grown electrochemically on silicon substrates with high degree of reproducibility. As direct application of these electrochemically grown Pd nanostructures they have been used as catalyst for the growth of multi wall carbon nanotube (MWCNT). It is observed that the MWCNTs are filled with a Pd based material during growth by microwave plasma enhanced chemical vapor deposition (MPECVD) technique. High-resolution transmission electron microscopy, used to study the material inside MWCNT suggests the formation of PdH0.649 or Pd2Si during the growth of carbon nanotube. Raman spectroscopy has been used to study the structure of the MPECVD grown carbon nanotubes.  相似文献   

8.
定向碳纳米管的化学气相沉积制备法   总被引:1,自引:0,他引:1  
报道了一种简便有效的合成定向碳纳米管 (CNTs)的化学气相沉积 (CVD)制备方法。以铁为催化剂 ,乙炔为碳源 ,采用单一反应炉 ,直接在石英基底上沉积催化剂颗粒薄膜 ,成功合成了定向性好、管径均匀的高质量大密度的碳纳米管  相似文献   

9.
To improve the photocatalytic efficiency of TiO_2 nanotubular catalyst,N doped and Pd decorated titania nanotubes was successfully synthesized via anodizing,hydrazine hydrate treatment and photoreduction of Pd ions.The small Pd nanoparticles were precipitated on TiO_2 nanotubes through photoreduction of Pd ions,and its distribution is relatively homogeneous.From X-ray photoelectron spectrometry(XPS) result,the N 1s spectrum represents two peaks with binding energy at 399.7 and 400.7 eV,which suggests that the nitrogen elements doped by hydrazine hydrate treatment are located in interstitial sites of the TiO_2crystalline structure.For N doped TiO_2 nanotubes with Pd particles,a high photocurrent was detected due to increase of interface charge carrier separation rate.Moreover,N doped and Pd decorated TiO_2nanotubes exhibited much higher dye destruction efficiency and rate constant due to the synergistic effect of the N dopant and the Pd deposition on TiO_2 nanotubes.  相似文献   

10.
The well aligned multiwalled carbon nanotube arrays were synthesized by injecting the acetonitrile-ferrocene solution at regular intervals of time. The carbon nanotube arrays were deposited on quartz substrate which is placed at the centre of the CVD reactor in quartz tube. The injection method in chemical vapor deposition allows-excellent control of the catalyst to carbon ratio which facilitates the better growth of aligned carbon nanotubes. The effect of various reaction parameters such as growth temperature, catalyst concentration, gas flow rate, growth time and substrate surface on growth of carbon nanotubes have been studied. It was observed that the diameter of carbon nanotubes increases with increase in catalyst concentration and temperature of the synthesis. The SEM analysis reveals that the average growth rate of carbon nanotube film synthesis was about 1.1 microm/min when the synthesis time was one hour.  相似文献   

11.
Zhu K  Vinzant TB  Neale NR  Frank AJ 《Nano letters》2007,7(12):3739-3746
We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO2 NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO2 NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO2 drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects.  相似文献   

12.
Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense, aligned parallel arrays of single-walled carbon nanotubes (SWNTs) on quartz wafers by using photolithography or polydimethylsiloxane (PDMS) stamp microcontact printing (μCP). By directly doping an FeCl3/methanol solution into Shipley 1827 photoresist or polyvinylpyrrolidone (PVP), various catalyst lines can be well-patterned on a wafer scale. In addition, during the chemical vapor deposition (CVD) growth of SWNTs the polymer layers play a very important role in the formation of mono-dispersed nanoparticles. This universal and efficient method for the patterning growth of SWNTs arrays on a surface is compatible with the microelectronics industry, thus enabling of the fabrication highly integrated circuits of SWNTs.  相似文献   

13.
Catalytic chemical vapor deposition (CCVD) with different activation modes (thermal; hot filaments-enhanced; direct current plasma-enhanced and both hot filament and direct current plasma-enhanced) are achieved in order to grow vertically aligned carbon nanotubes (VA CNTs). By widely varying the power of the different activation sources of the gas (plasma, hot filaments, substrate heating) while keeping identical the substrate temperature (973 K) and the catalyst preparation, the results point out the important role of ions in the nucleation of carbon nanotubes (CNTs), as well as the etching behaviour of highly activated radicals such as H˙ in the selective growth of vertically aligned films of CNTs. Moreover, it is demonstrated that, within the deposition conditions (temperature, pressure, flow rate) used in this study, oriented carbon nanotubes can be grown only when both ions, mainly generated by the gas discharge plasma, and highly reactive radicals, mainly formed by the hot filaments, are produced in the gas phase. We propose that highly energetic ions are needed to nucleate the carbon nanotubes by increasing the carbon concentration gradient whereas the highly reactive radicals allow the selective growth of vertically aligned CNTs by preventing carbon deposition on the whole surface through chemical etching of edge carbons in graphene sheets.  相似文献   

14.
Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.  相似文献   

15.
在AAO ( 阳极氧化铝 ) 模板上的定向纳米碳管表面制备了有机和无机膜。一种是采用真空蒸镀的方法沉积酞菁铜 ( CuPc ) 有机膜,另一种是用电沉积的方法在碳管表面沉积钴金属膜。对所镀的膜层进行了扫描电镜和透射电镜观察,结果表明:在纳米碳管表面获得了均匀的有机和无机涂层。它们的区别是蒸镀方法使纳米碳管背面不能获得涂层,而电镀方法能在整根纳米碳管上获得均匀涂层。   相似文献   

16.
Nanoparticles of zirconia (ZrO2) were in situ synthesized on the surface of carbon nanotubes by means of liquid phase reactions and a proper heat treatment process. The size of the nanoparticles could be controlled by the amount of zirconium source materials in a solution and its reaction times. In this study, the size of the nanoparticles ranged from several nanometers to twenty nanometers. It was particularly noted that the synthesized zirconia possessed a cubic structure (c-phase) which generally existed as a stable form of zirconia crystals at high temperatures (above 2370 °C) as well as a form of zirconia that could be used for enhancing the fracture toughness of alumina ceramics. Experimental results showed that the mechanical properties of alumina ceramics mixed with in situ synthesized nanoparticles on the surface of carbon nanotubes were much better than that of pristine nanotubes or zirconia nanoparticles alone. The existence of the nanoparticles on the surface of nanotubes results in improving the dispersion and bonding properties of the nanotubes in alumina matrix environment. The fracture toughness of CNT/ZrO2 alumina ceramics was also improved by the mechanism of bridging effect.  相似文献   

17.
Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.  相似文献   

18.
采用化学气相沉积法(CVD),在溅射了镍薄膜的硅基底上制备了定向碳纳米管薄膜。对镍薄膜的氨气预处理过程及其机理进行了研究。结果发现预处理后的岛状区域随着薄膜厚度的增加而增加,纳米粒子区域的变化则与之相反。对5nm的镍薄膜进行预处理能获得细化和均匀分布的纳米粒子,有利于定向碳纳米管的生长。碳纳米管的生长过程及其细微结构与温度有很大关系。碳源的分解、碳原子在催化剂内部的扩散以及催化剂粒子的团聚三者之间的竞争决定了碳纳米管的生长情况。本文分析了碳纳米管的顶部生长模式及该模式下催化剂粒子的形态变化。  相似文献   

19.
Carbon nanostructures represent a revolution in science and hold the potential for a large range of applications because of their interesting electrical, mechanical, and optical properties. Multiwall carbon nanotubes and carbon nanofibers of herringbone formation were grown by chemical vapor deposition on different catalysts from a number of hydrocarbon sources. After the total or particle removal of the catalyst system, the carbon nanostructures were analyzed for hydrogen uptake. Six samples of nanofibers grown on a Pd-based catalyst system (with a surface area of 425–455 m2/g) were controlled oxidized in air, such that they had different ratios of Pd/C varying from 0.05 to 0.9 mole ratio. The hydrogen uptake experiments were performed volumetrically in a Sievert-type installation and showed that the quantity of desorbed hydrogen (for pressure intervals ranging from 1 to 100 bars) by the carbon nanostructures free of any metal catalyst particles was between 0.04 and 0.33% by weight. For the samples of nanofibers that contained Pd in various Pd/C ratios, palladium revealed catalytic properties and supplied atomic hydrogen at the Pd/C interface by dissociating the H2 molecules. The results show a direct correlation between the Pd/C ratio and the quantity of hydrogen absorbed by these samples. A saturation value of about 1.5 wt.% was reached for a high ratio of about 1:1 of Pd/C. The multiwall carbon nanotubes grown on a Fe:Co:CaCO3 catalytic system and purified by acid cleaning and air oxidation showed a hydrogen uptake value of 0.1 to 0.2 wt.%.  相似文献   

20.
Bioinspired materials offer new routes in nanotechnology. These materials are composed from chemically synthesized biomolecules and inspired by natural biological structures. They are self assembled into highly ordered nanostructures (nanotubes, nanospheres, etc.) from elementary building blocks of biological origin such as peptide and proteins. We developed a new technique of physical vapor deposition of peptide nanotubes (PNT) and applied it to electrochemical energy storage devices—supercapacitors (SC). In this work, aligned and homogenously distributed diphenylalanine PNT have been used to modify carbon electrodes for SC devices. Electrochemical properties of PNT coatings of different density and height, modifying carbon electrodes have been studied. We have found that aligned PNT arrays significantly increase the double layer capacitance of the carbon electrodes. The found enlargement of the PNT-modified electrode capacitance has been ascribed to increasing of usable electrode surface area of the carbon electrodes coated by PNT. We show that the critical factor of the accumulation process of the electrolyte ions at the PNT-modified electrode surface is a wetting process of the PNT nanoscale hydrophilic channels by aqueous electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号